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"T am not very happy about this
and the search for exotica in Science
(with apologies)

Stuart Freedman
UC Berkeley / LBNL*

(*ANL Physics Division from 1982 until 2003
when I was forced to retire by the the Division Director)



Research Interests

My primary interests have been in trying to understand the single-particle structure and effective interactions
that underlie the structure of structure of atomic nuclei. This entails calibrating reaction mechanisms to best
extract the relevant information. Some of this work was done a long time ago - and some recently -
particularly with a focus on how these nuclear properties might change as nuclei move further away from
stability.

An additional interest of mine has been to investigate 'exotic’ phenomena that are assoclated with nuclear
physics. Among these (and the only one that mrned ont i he real) was the Massbauer effect. When I first
heard of it (a small effect in 1911Ir) we were incredulous but then Argonne was were the first to repeat this
successtully. Shortly after this I came across 37Fe. and from this a whole industry emerged; I worked on
relativistic red-shift measurements. After quarks were first proposed by Gell- Mann, I spent a fair amount of
effort in looking for stable fractional charges in Nature - including sea water, the atmosphere, meteorites, and
moon dust, and on trying to reproduce some positive experiments in this regard - we found nope. After that
came the 'GSI positron lines' reported from the collisions between very heavy nuclel, and qur work with
APEX could not confirm the rcpf}rtcd phenomena. I did some work on cold fusion. Recently the reported
‘triggered decay’ of an isomer in HI by x-rays, lead to speculations about new method of alrplanc propulsion

and of other uses. We found no such effect” We also set a limit on helium-like strangelets in pature.

[ am currently involved with a number of measurements with unstable light nuclei that are of interest both for
nuclear structure and related to microscopic ab origine theoretical predictions of nuclear properties and for
astrophysical interests. I have proposed a new scheme for charged-particle detection from reactions in inverse
kKinematics (that 1s required with radioactive beams) a technique that could overcome many of the current
difficulties encountered in such measurements. The scheme requires a large super-conducting solenoid and
methods of obtaining such a solenoid and detector array are being pursued.

An interest that grew out of nuclear physics 1s 1n the simulation of very cold plasmas such as can be obtained
In 1on traps and storage rings and the properties of such plasmas properties assoclated with crystallization.,




Scanned at the American
Institute of Physics

John and I have nothing in commonl!

We share an appreciation for null experiments.
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Why did you show that slide
of your SLAC experiment?
It was so out of focus you
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EXPERIMENTAL SEARCH FOR STABLE, FRACTIONALLY CHARGED PARTICLES*

W. A. Chupka, J. P, Schiffer, and C. M. Stevens
Argonne National Laboratory, Argonne, Illinois
(Received 23 May 19686)

Various samples of matter were examined to search for stable quarks, particles of
charge }e or aue. The three materials examined were iron meteorites, air, and sea wa-
ter; the concentrations of quarks were less than 107", 5% 10727, and 3% 10~ per nucle-

omn.

Following a suggestion by Gell-Mann' that
particles with fractional charges (quarks) may
be the basic constituents of nucleons and that
some form of quarks would be stable, we have
tried a series of experiments designed to ob-
serve such particles in nature. Most exper-
iments reported so far in the literature have
attempted to recognize such particles imme-
diately after their production, by the anoma-
lously small ionization they would cause in
the relativistic limit. Experiments using ac-
celerators? and cosmic rays® can be summa-
rized as setting a probable limit M,_?RBEV!
¢ on the quark mass. The present experiment
is an effort to exploit the stability of quarks,
and the property of fractional charges that they
cannot be neutralized in ordinary substances.
In particular, negative quarks of charge -%e
would be captured in ordinary atoms in a Bohr
orbit, which for such a heavy particle would
be inside the nucleus. Such atoms then would
be fractionally charged and remain so indef-

would have an ionization potential of 6,04 eV,
would exist as a hydrated ion in water solution,
and under most conditions would evaporate
predominantly in a tight association with an
electron or a negative ion; the +2 quark thus
is probably best sought as a negatively charged
species. Our experiments have been concen-
trated on these.

It is amusing to note that Millikan, in his
first published report on measurements of the
electron charge on water droplets in a cloud
chamber, remarks: “Inthe third place I have
discarded one uncertain and unduplicated ob-
servation apparently upon a single charged drop,
which gave a value of the charge on the drop
some 30% lower than the final value of ¢.”*

It may even be argued that later measurements
of the electron charge with oil drops were less
likely to turn up quarks because oil-bearing
strata are at such depths as to be shielded from
any quarks produced by cosmic rays, and that
the chemical properties of a fractionally charged
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From the Magazine | Science

The Huntina of the Quark

Argonne National Laboratory physicists have also examined iron

metear ites, air and sea water in a vain attempt to find quarks that had
combined with stable atoms. Instead of being electrically neutral, they
reasoned, such atoms would have fractional charges imparted by the
quarks—enabling scientists to separate them out in an electric field
and analyze them. Because quarks would more likely combine with
heavier atoms, one scientist has suggested looking for quark-bearing
atoms in oysters, which tend to concentrate the heavier elements in
the seas.
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hope some day to restore order by finding a truly elemental particle
— one out of which all the others are made.

\-..




Collaborations with John

Evidence against a 17-keV neutrino from S-35 beta decay.
J.L. Mortara, I. Ahmad, K.P. Coulter, S.J. Freedman, B.K.
Fujikawa, J.P. Greene, J.P. Schiffer, W.H. Trzaska, A.R. Zeuli
Phys.Rev.Lett.70:394-397,1993

Search for narrow sum energy lines in electron positron pair
emission from heavy ion collisions near the Coulomb batrrier. I.
Ahmad et al. Phys.Rev.Lett.75:2658-2661,1995

B* Decay Partial Half-Life of **Mn and Cosmic Ray Chronometry
A. H. Wuosmaa et al Phys. Rev. Lett. 80, 2085-2088 (1998)

Determination of the 8B neutrino spectrum. W.T. Winter et al.
Phys.Rev.Lett.91:252501,2003
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Evidence of Heavy-Neutrino Emission in Beta Decar

I. 1. Simpson
Depariment of Phytacs and Guelph- Waterion Program for Graduaw Wark i Phvrics, Universugr of Gueioh,

Cuplpts. Caarin MG W, Corada
{Received L8 Fesrunry 1985)
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SUMMARY OF POSITIVE RESULTS

SOQURCE SIN?@ My EXPERIMENT TYPE
3H 110 +/-0.30 17.07 +/-0.09 Implanted source

3H 1.11 +/-0.14 16.93 +/-0.07 Implanted source

14C 1.40 +/-045 17.00+/-2.00 Implanted Source

71Ge 1.60 +/-0.74 17.20 +/- 1.30 IBEC

35Fe 0.85+/-045 21.00+/-2.00 IBEC

355 0.73+/-0.11 1690+ /-0.40 External source

i5g 0.84 + /- 0.08 17.00 + /- 0.40 External source

63N 099 +/-0.12 1675+ /-0.35 External source



The massive neutrino would “violate
every theoretical prejudice we have in
particle physics, astrophysics, and
cosmology,” says Michael Turner, a
University of Chicago expert on
cosmology.

“It's a true surprise. If it's true, then it's
pointing us in a different direction than
previous physics suggests.” adds John
Bahcall of the Institute for Advanced
Study at Princeton.
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Is There a Massive Neutrino?
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Evidence Against a 17 keV Neutrino from 355 Beta Decay

J.L. Mortara1606) 1 Ahmad™), KP. Coulter(1?, 5.). Freedman(1%(2.0L00,
B.K. Fujikawal1%@, | P. Greenel1?, | P. SchifferM4), W H. Trzaska>h (B}
and AR. Zeulitl?

M Argonne Nativral Laboratory, Argonne IL 60433
D mwrence Berkeley Laboratory, Berkeley CA 34720
N University of California, Berkeley CA M720
M} University af Chicago, Chicage 1L 60637
03) Texns AGM Undversity, College Station TX 77843

{ Received fgr{-!ﬁml

Wi have searched for the effect of a 17 keV /<@ - mass neutrino in the beta decay of 395 with an apparatus incorporating
a high-resolution solid-state detector and a superconducting solenoid. The experimental mixing probability, sin@ =
0004 + QL0008 (star) + 0.0008 (syst), is consistent with zero, in disagreement with several “revious experiments. Our
senesitivity 10 neutring mass is verified by measurements with a mixed source of 355 and "C which artificially produces

a distortion in the beta spectram similar to that expected from the massive neatring.

Pullished Twlfllﬂﬁ

PACS nambers: 14.60.Ch, 23.40.Bw
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Progress
. |
Natire 366,29 - 32 (04 November 1993 ); doi: 101038/ 36602090

The rise and fall of the 17-keV neutrino

DOUGLAS R. 0. MORRISON

CERM, CH-1211 Geneva, Switzetand.

Experiments showing evidence for a heavy neutrino with a mass of 17 keV launched the new particle on an
erratic eight-yvear career, during which it raised questions about the Standard Model of particle physics and
about cosmological theories, stimulated many theoretical papers and pushed experimental techniques to
their limit. Its demise provides grounds for faith in the efficacy of the scientific method.
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Looking for the oscillation effect
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Observing the oscillations in the neutrino rest frame
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The Standard Model of Quarks and Leptons
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The Standard Model of Quarks and Leptons
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Quarks

1- ] ~175 GeV b —————— 45 GeV
C ~1.4 GeV S ~150GeV
u ~0.004 GeV d ~0.014 GeV
Q=2/3 Q-=-1/3
Leptons
T — ~1.780 GeV ——
e cC RO
u ~0.105 GeV
e ~0.0005 GeV
Normal Q=0 Inverted

Neutrinos



Measuring the rest: 0,2,0~p
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e look for rate deviations from 1/r2 and spectral distortions
 observation of oscillation signature with 2 or multiple detectors
* baseline O(1 km), no matter effects
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Claimed Observation of OvBp in 7°Ge  RgiEleElvE(eRUElal
Experiment

by

5 detectors of overall 10.96 kg enriched to 86%.
Most sensitive to date.
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MOON
Candidate Experiments
sin®26.3
Experiment | Nucleus Detector
NEMO Il |['®Moetal |10 kg of enrich. Isotopes -tracking
Cuoricino | *°Te + etc. |40 kg of TeO, bolometers (nat)
CUORE 130Te + etc. | 750 kg of TeO, bolometers (nat)
EXO 136%e 200kg - 1t Xe TPC
GERDA “Ge 30 S40 kg S 1t Ge diodes in LN
Majorana | "°Ge 180 kg - 1t Ge diodes
MOON 1000 nat.Mo sheets in plastic sc.
DCBA 10Nd 20 kg Nd-tracking
CAMEO 1¢cd 1t CdWO, in liquid scintillator
COBRA 11%cd |, 1%°Te | 10 kg of CdTe semiconductors
Candles BCa Tons of CaF in liquid scintillators
GSO 1¢cd 2 t Gd,SiOs:Ce scintill.in liquid sc.
Xe %% e 1.56 Xenon in liquid scintillator.
Xmass %% e 1 t of liquid Xe
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Majorana
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Neutrino Flux
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APS Multidivisional Neutrino Study
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| wonder If John liked my talk.

I am not very
unhappy about thisl!







	Measuring the rest: 13,CP
	Claimed Observation of 0 in 76Ge 
	Candidate Experiments

