

Physics Division Seminar

Sergio Almaraz

Florida State University

The Influence of the ²⁶Al 0⁺ Isomer on the Destruction of Galactic ²⁶Al

Host: Shaofei Zhu

Monday, September 25, 2017 – 203, R150, 3:30 PM

The detection of the 1.809-MeV gamma-ray line from the decay of ²⁶Al in the interstellar medium provides direct evidence of ongoing nucleosynthesis in the Galaxy, confirming earlier measurements of excess ²⁶Mg in meteorites and presolar dust grains. ²⁶Al is one of the best studied radio-isotopes in our Galaxy. Its nucleosynthesis has wide implications for the birth of the solar system and evolution of our Galaxy. The presence of a low-lying 0⁺ isomer, however, severely complicates the astrophysical calculations. It is expected that radiative proton captures on both, the ground (²⁶Al⁹) and isomeric (²⁶Al^m) states in ²⁶AI, dominate the destruction path of ²⁶AI in Asymptotic Giant Branch stars, Classical Novae and Core Collapse Supernovae. In this talk, I'll present results of a novel study of the ²⁶Al^m(d,p)²⁷Al reaction using, for the first time, an isomeric ²⁶Al beam. Implications for the destruction of ²⁶Al^m in relevant astrophysical scenarios will be discussed.