Correlations

Explicitly included at the mean-field level:
o Statistics (fermions)

« Pairing (BCS or HFB)

« Deformation (can bring up to 20 MeV!)

Absent:
e Symmetry restoration
« Configuration mixing (shape, multi qp excitations, ...)

Can all missing correlations be included in the interaction?
(“DFT spirit”)



Beyond mean-field m

Set of mean-field wave functions depending on axial g

*Projection on N, Z, J:

|JOq) = TPOQPZPN‘Q>

New wave functions by mixing on q:

|JOk) = >, f1k(q)|JO0q)

with f; , () determined by minimizing the energy:

__ (JOK|H|JOk)
Ejk = “70kJ08

BriX .-
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Hartree-Fock + BCS (Skyrme SLy6 interaction + density dependent zero-range pairing force)
=configuration mixing of angular-momentum and particle-number projected self-consistent
mean field states

(M. Bender,P. Bonche, T. Duguet, and P.H. Heenen, PRC 69, 2004, 064303)
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FIG. 3: Difference from the experimental mean square charge
radil { Fxpt), the beyvond mean field calculations with normal
[4] (MF) and decreased pairing [18] { MF*) and the IBM cal-
culations ({BM ) to the droplet model caleulations for a spher-
ical nucleus. Isodeformation lines from the droplet model at

(#2=0.1 and 0.15 are shown. B iX ;



Global calculations
Projection + Configuration mixing for all e-e nu &=
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Density functional method

« Beyond mean-field: correlations introduced explicitly
« Why not implicitly in the interaction?

 How to fit an interaction?

Existing tool: the density functional theory

What do we want to be able to calculate:
ground state properties only?
spectra, transition probabilities, ... also?

J. Perdew and S. Kurth, LNP 620, 1 (2003), Springer Verlag



Starting point of the DFT ideas:
analysis of the Hartree-Fock method

(clarifying case: atoms and Coulomb interaction)

HF equations written as a function of the one-body diagonal
and non diagonal densities:

n(r) = Z |r_-'}j{1‘j.l|2
J

'1'r1 r’ Zu r1



The HF equation:

2

2m

erdp(r) = (- A+ vegt(r))Op(r) + u(r)o(r)
— /dﬂr"ﬂ."1"{1:1”]1*{1" — 1) (r")

where ulr) = ] dr'v(r" — rin(r’)

The first line Is easy: problem in a potential.
The second line i1s complicate: non local exchange term.
Moreover, correlations beyond a Slater determinant are missing.

But do we need all the information of the true gs wave function?
DFT: take full benefit of the form of the energy as a function of densities

simplify the exchange term
Introduce what is missing from a mean-field model



Hohenberg Kohn theorem

Hamiltonian separated in two parts: H, (electron coordinates)
(Kinetic + 2-body)

V. (external field, nucleus-electron)
Ground state wave function ¥ gives the gs energy:

and the density n(r)

density <= energy <~ ground state wave function
(non degenerate)



Ground state wf minimizes H over all antisymmetrised N-particle wf’s.

E = 11}111 (U|H|W)

Two steps:
1. minimizing with respect to all the ¥ giving the same density n(r)

min (U|H|W) = min (T|T + V.. |F) + /{13'?‘ v(r)n(r)
v —n r—n . o

All wave functions corresponding to the same density give the same
matrix element for v(r)!

One defines the universal functional of the density:

Fn] = min(@|T + Vo |@) = (™0 4 V@i

)
r—n

ymin js the wave function corresponding to the minimum for a given n



2. Minimization of the energy with respect to all N-electron densities

E = min E,|n]
T

= 1min {F[n] + /ilgf i'(F:J??(P)}

Constraint on the number of particles N by a Lagrange multiplier u

) {F[n] + /{13?‘ v(r)n(r) — u /{131" -n[:rj} = ()

. oF .
equivalent to: Sn(r) +olr)=pu




Definition:
the exchange-correlation energy E, [n] Is defined by

Fn] =Tn| + Uln| + Ex:[n]

/{13‘/‘31"'~
\I‘—I"\

The energy is given by:

E = Ts[n] + / o(F)n(F)d7 + Uln] + Exeln]
The density is determined through the Kohn Sham equation:

TLQ
(——A—I—u([n] 7) +vzc([n]; 7)) Va(F) = eatha(F)

which is a fictitious one-electron Shrodinger equation.



- The kinetic energy Is treated exactly: large term

responsible for density oscillations
The exchange correlation energy is approximated

e TWO terms:
Exrcln] = Ex[n] + Ec[n]

where:  Ep[n] =< ¢ Vel > —Uln)

If ® Minis a Slater, E, is the Fock term of the KS orbital
Not HF term because @, ™" differs from the true HF orbital of the system

The correlation energy is well defined:

E.[n] = Fn] — {Ti[n] + Uln] + Ex[n]}



Prescriptions to design a DFT

«Construction by “constraint satisfaction”; DFT must satisfy as many known exact
constraints as possible

e Correct in the uniform density limit

« Scaling properties

« Correct long range part

 Avoid divergences caused by the approximation of the exchange energy

(should the exchange be calculated exactly?)

e Self interaction problem

* No need that KS determinant display all symmetries of the true wave function.



Table 1.1. Typical errors for atoms, molecules, and solids from selfconsistent Kohn-
Sham calculations within the LSD and GGA approximations of (1.11) and (1.12).
Note that there is typically some cancellation of errors between the exchange ( Ex)
and correlation (£} contributions to Fyx.. The “energy barrier” is the barrier to a
chemical reaction that arises at a highly-bonded intermediate state

Property LSD GGA

Ex 5% (not negative enough) 0.5%

E. 100% (too negative) 5%

bond length 1% (too short) 1% (too long)
structure overly favors close packing more correct
energy barrier 100% (too low) 30% (too low)

Table 1.2. Mean absolute error of the atomization energies for 20 molecules, eval-
uated by various approximations. (1 hartree = 27.21eV) (From [20])

Approximation Mean absolute error (eV)
Unrestricted Hartree-Fock 3.1 {(underbinding)

LSD 1.3 (overbinding)

GGA 0.3 {(mostly overbinding)

Desired “chemical accuracy” 0.05




Table 1.4. Atomization energies of molecules, in eV. (1hartree

From [20]

Atom LSD GGA Exact
H —0.29 —0.31 —0.31
He —1.00 —1.06 —1.09
Li —1.69 —1.81 —1.83
Be —2.54 —2.72 —2.76
N —6.32 —6.73 —6.78
Ne —11.78 —12.42 —12.50

Molecule LSD GGA Exact
H- 4.9 4.6 4.7
CH, 20.0 18.2 18.2
NH; 14.6 13.1 12.9
H-oO 11.6 10.1 10.1
CO 13.0 11.7 11.2
0o 7.6 6.2 5.2

Table 1.3. Exchange-correlation energies of atoms, in hartree

27.21eV).



The Lyon interactions: how were they constrained?

a good reproduction of the saturation point of the symmetric infinite nuclear matter,
ie. po ~ 0.16 fm—3, E/A ~ —16 MeV,

a compression modulus of the symmetric nuclear matter K, =~ 230 MeV,

a symmetry energy ag ~ 32 MeV,

an enhancement factor of the Thomas—Reiche-Kuhn sum rule « = 0.25 (energy
weighted sum rule occurring in the El; T = 1 giant dipole resonance),

a reasonable reproduction of the Wiringa et al. [8] equation of state for pure neutron
matler,

a good reproduction (see Table 5 in part I) of the binding energies of doubly magic
nuclei — %0, **Ca, Ni, '*2Sn and *“Ph - as well as their r.m.s. radii when
experimentally known,

no constraint on the surface properties.

Large importance of nuclear matter and of neutron matter
(as the electron gas for usual DFT)



Consensus on the need of a larger set of data (UNEDF)

Spherical Nuclei
Masses, r.m.s. radii, diffraction radii and surface thickness

*Giant monopole and dipole resonance in %Zr, 116Sn and 298Pb
*Experimental energy of the first 2+ state and B(E2) value in Ca, Ni, Sn and Pb isotopes

Axially-deformed Nuclei

*Binding energy of well-deformed even-even nuclei.

*Super-deformed bandheads and fission isomers

Symmetry-unrestricted

*Ground-state spin and parity for odd-mass nuclei (odd-even, even-odd and odd-odd)

*High-K terminating states in f-p shell nuclei
*19.p. excited states of odd-mass heaviest elements



All correlations 1n the interaction?

» There should be according to the DFT!
e BUT: form of the functional is unknown

Double counting problem if correlations are added
to a density functional

It is better to avoid in the density functional correlations which
vary rapidly with A

« Physical interpretations could be more obvious if beyond
mean-field correlations are explicitly treated

(rotational and vibrational correlations)
o Spectra, transition probabilities?



Example: shell effects far from stability

How do shell effects evolve with N and Z far from stability

Quenching of shell effects?
Coupling between the continuum and the bound sp states?

M. Bender, G. Bertsch, P.-H. Heenen:

Calculation of the ground state of all e-e nuclei including
correlations due to symmetry restorations

configuration mixing
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