Atmospheric krypton and xenon from ice cores suggest a two degree deep ocean warming from 18 ka to 16 ka

Jeffrey P. Severinghaus

Scripps Institution of Oceanography, La Jolla, USA

Kenji Kawamura

National Institute for Polar Research, Tokyo, Japan

Argonne National Lab, Physics Division

21 June, 2012

Acknowledgments

Kenji Kawamura (86Kr/82Kr development and Kr & Xe measurements on Dome Fuji ice core)

Melissa Headly (PhD thesis 2008 on Kr & Xe GISP2)

Ross Beaudette (laboratory)

Ralph Keeling (suggested the idea that Kr & Xe should vary)

Julie Palais, NSF-OPP Antarctic Glaciology

National Ice Core Laboratory (Eric Cravens, Geoff Hargreaves)

Gary Comer Science and Education Foundation

Outline

- 1. Motivation
- 2. Expected Kr/N₂ and Xe/N₂ change
- 3. Measurements
- 4. Gravitational and thermal correction
- 5. Potential complications: Firn air disequilibrium, melt layers, gas loss?
- 6. Summary

Motivation

Earth system will respond to human forcing.

"FEEDBACKS"

How?

How much?

Study of past climate can help to shed light.

Problems:

Ocean temperature records uncertain: benthic ¹⁸O ambiguity

Spatial heterogeneity of ocean

Timing of ocean temperature change vs. greenhouse

gases uncertain

Polar ice cores:

- Dated by counting annual layers (up to ~40k)
- Preserve past atmospheres in air bubbles in the ice!

Trapped gases reveal a cornucopia of information about the Earth's feedback response to perturbation:

(a partial list....)

Climate forcing via greenhouse effect: CO₂, CH₄, N₂O

Rapid temperature change at ice sheet surface: ¹⁵N/¹⁴N of N₂

⁴⁰Ar/³⁶Ar, ⁸⁶Kr/⁸²Kr

Asian monsoon strength: 18O/16O of O2

Fossil vs. biological sources of methane: ¹⁴C/¹²C of CH₄

Synchronization of ice cores: CH₄, ¹⁸O/¹⁶O of O₂

? Mean ocean temperature: Kr/N₂, Xe/N₂?

MOTIVATION: WHY DID CO₂ CHANGE WITH ICE AGE?

2. Expected Kr/N₂ and Xe/N₂ at LGM: simple model

Gas solubility is a function of temperature

Model:

Includes Levitus T, S spatial distribution

120 m lower sea level

3% smaller ocean volume

3% increase in salinity ("salting-out")

1.6% increase in sea level pressure

Uniformly applied temperature change

Neglects possible dissolved gas disequilibrium

lower density of ice sheet vs. water

high-altitude ice displaces fewer air molecules

variations in salinity structure of ocean

biogeochemical changes in N₂ inventory

3. Measurements

Typical measurement conditions and precisions

Gas	Sample size	Resistors	Beam current Integration time	
	(mISTP air)	(Ω)	(nA)	(s)
$\delta^{29}N_2/^{28}N_2$	2	3e8 / 3e10	13 / 0.1	16
δ^{40} Ar/ 36 Ar	50	3e8 / 1e11	20 / 0.07	16
δ^{86} Kr/ 82 Kr	50	1e12 / 1e12	9e-4	16
δ^{84} Kr/ 36 Ar	50	1e12 / 1e11	2e-3/ 0.07	16
δ^{132} Xe/ 36 Ar	50	1e12 / 1e11	3e-4/ 0.07	16

Gas	Changeover cycles	1σ error (per mil)	Δm	error/∆m (per mil)
$\delta^{29}N_2/^{28}N_2$	90	0.002	1	0.002
δ^{40} Ar/ 36 Ar	64	0.008	4	0.002
δ^{86} Kr/ 82 Kr	96	0.016	4	0.004
δ^{84} Kr/ 36 Ar	2	0.2	48	0.005
δ^{132} Xe/ 36 Ar	2	0.4	96	0.005

4. Gravitational and thermal correction

Gravitational fractionation

(Dalton, 1826; Gibbs, 1928; Craig + Sowers, 1988)

$$\delta = [\exp(\Delta mgz/RT) - 1] 10^3 \%$$

Δm mass difference

g gravitational accelleration

z depth

R gas constant

T temperature, K

Example: $\Delta m = 1$, z = 80 m, T = 230 K

$$\delta^{15}$$
N = +0.4 ‰

Thermal diffusion in gases

$$\delta = \Omega \Delta T$$

- δ isotopic enrichment ($\delta^{15}N$)
- Ω thermal diffusion sensitivity
- T temperature

5. Potential complications: Firn air disequilibrium, melt layers, gas loss?

Zero-accumulation site: 23-m convective zone. Heavy noble gases are less fractionated

Cracks greatly aid air flow through firn!

- at least 6 m deep
- -polygonal plan
- formed by thermal contraction plus sublimation?

GISP2 and Dome Fuji $\delta Kr/N_2$, $\delta Xe/N_2$, Dome Fuji and Dome C

Vostok glacial inception CO_2 , $\delta Kr/N_2$, $\delta Xe/N_2$

Conclusions

Kr and Xe suggest ~2 deg of mean ocean temperature warming between 18-15 ka. [We still need to deal with the gas loss issue, though.]

Glacial inception also shows synchronous CO₂, Kr, Xe.

Consistent with existing models of atmospheric CO₂ control by deep stratification (Toggweiler, 1999) or Antarctic sea ice (Stephens and Keeling, 2000).