Overview of Generalized Parton Distributions in Nuclei

> Simonetta Liuti University of Virginia

6

ANL-EIC Workshop April 7-9, 2010

<u>Outline</u>

- Introduction: Nuclear Targets at MEIC
 - Focus on exclusive experiments, GPDs (today's talk)
 - Color Transparency (tomorrow's talk)
 - Radius of Quark Distributions in Nuclei
- From JLAB 6-12 GeV to MEIC
- Conclusions/Outlook

A BRIEF HISTORY ...

⇒ The idea of using nuclei as "laboratories for QCD" is introduced in the '80s by Brodsky, Frankfurt, Ioffe, Kopeliovich, Miller, A. Mueller, Nikolaev, Pire, Ralston, Strikman....

⇒ Experiments are performed: EMC, NMC @ CERN, E665 @ Fermilab, DY and J/ψ production @ Fermilab, etc...

⇒ Many intricacies and controversies appear: <u>no clear-cut</u> <u>interpretation</u> of the "EMC-effect", of the onset of shadowing and anti-shadowing (are sum rules satisfied in nuclei? are parton distributions probabilities?), Color Transparency....

 \Rightarrow TODAY: Deeply Virtual Exclusive Experiments add a whole new dimension where to explore nuclear medium modifications. One can observe previously inaccessible spatial d.o.f.

Tmanes from 11 Frankfurt + G Miller websites

Recent activity in this field

Theoretical work

Formalism

D.Mueller and Kirchner (2004) .. Some formalism on A-dependence of DVCS Guzey and Strikman (2004) .. A-dependence in BSA from nuclear DVCS Liuti and Taneja (2005) .. Nuclear Medium Modifications of GPDs Berger, Cano, Diehl, Pire (2001) Deuteron/Spin 1

Color Transparency Liuti and Taneja (2005) .. Color Transparency Burkardt and Miller (2006) .. Color Transparency

Models

M. Polyakov (2003) Liquid Drop Model Cano and Pire (2003) Deuteron Scopetta (2004) .. 3He Liuti and Taneja (2005) 4He --detailed study of coherent and incoherent cha Guzey and Siddikov (2006) .. A-dependence @ low x_{Bj}

Experiments

HERMES \Rightarrow initial results (large uncertainties) Jlab \Rightarrow Deuteron: M. Mazouz et al., Jlab \Rightarrow ⁴He: K. Hafidi et al., + LOI for 12 GeV

2. Some Formalism

GPDs in Nuclei: Off-forward EMC effect

Nuclear Hadronic Tensor
$$T^{A}_{\mu\nu}(P_{A},\Delta) = \int \frac{d^{4}P}{(2\pi)^{4}} T^{N}_{\mu\nu}(k,P,\Delta) \mathcal{M}^{A}(P,P_{A},\Delta),$$

Nuclear Correlator

$$\mathcal{M}_{ij}^A(P, P_A, \Delta) = \int d^4 y \, e^{iP \cdot y} \langle P'_A | \overline{\Psi}_{A,j}(-y/2) \Psi_{A,i}(y/2) | H_{A,i}(y/2) | H_{A,i}$$

to f

Non-forward kinematics

Use e.g. a spectator model (with a spin 0 diquark) to take a closer look to the nucleon correlator \mathcal{M}^{N} ...

From \mathcal{M}^{N} to \mathcal{M}^{A} (Spin O)

$$\mathcal{M}_{ij}^{A} = \overline{U}_{A-1}(P'_{A}, S)\overline{\Gamma}_{A}(P', P'_{A}) \frac{(\not\!\!P' + M)}{P'^{2} - M^{2}} \frac{(\not\!\!P + M)}{P^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S) \frac{(\not\!\!P + M)}{P'^{2} - M^{2}} \Gamma_{A}(P, P_{A}) U_{A-1}(P_{A}, S)$$

 $U_{A-1} \rightarrow \text{spectator } A-1 \text{ nucleons with mass } M^*_{A-1}$

 $\Gamma_A \rightarrow$ nuclear vertex function

$$\mathcal{M}_{ij}^{A} = \mathcal{N}_{A}\left(\sum_{S} U_{i}(P,S)\overline{U}_{j}(P',S)\right) \
ho_{A}(P^{2},P'^{2})$$

Non-forward nuclear spectral function

In order to extract GPDs, use <u>helicity amplitudes</u>

For real photon production the amplitude relations are

$$f_{\Lambda_{\gamma},0;+1,0} = \sum_{\lambda,\lambda'} g_{\Lambda_{\gamma},\lambda;+1,\lambda'} C_{0,\lambda';0,\lambda}.$$

The C amplitudes can be written in terms of the quark-nucleon helicity amplitudes:

$$C_{0,\lambda';0,\lambda} = \sum_{\Lambda_N,\Lambda'_N} \int d^4 P B_{0,\Lambda'_N;0,\Lambda_N} A_{\Lambda'_N\lambda';\Lambda_N,\lambda}$$
Chiral-Even
Quark-Nuc
Helicity Arr

Two terms survive for pseudoscalar production:

$$\begin{array}{rcl} T & \Rightarrow & g_{1+,0-} \, C_{0-;0+} \\ L & \Rightarrow & g_{0+,0-} \, C_{0-;0+} \end{array} \end{array} \qquad \begin{array}{rcl} {\sf Nucleon-Nucl} \\ {\sf Helicity Amps} \end{array}$$

Both terms contain the same chiral odd C function. The latter is given by:

$$\underline{C_{0,-;0,+}} = \int d^4 P \left[B_{0+.0-}A_{+-;-+} + B_{0-;0-}A_{--;-+} + B_{0+;0+}A_{+-;++} + B_{0-;0+}A_{--;++} \right]$$

For photon production the leading twist contribution to the hard amplitudes singles out the helicity conserving case for which only

$$T \quad \Rightarrow \quad g_{1+,1+} \, C_{0+;0+}$$

The chiral even C functions are given by:

$$C_{0,+;0,+} = \int d^4 P \left[B_{0+,0-}A_{++;-+} + B_{0-;0-}A_{-+;-+} + B_{0-;0-;0-}A_{-+;-+} + B_{0-;0-}A_{-+;-+} +$$

- Quark-Nu Helicity Aı

$$\begin{split} H^{A}(X,\zeta,t) &= \int \frac{d^{2}P_{\perp}dY}{2(2\pi)^{3}}\mathcal{A}\rho_{A}(Y,P_{\perp}^{2},\zeta,t) \\ &\times \quad c_{1}(\zeta,t)\left[H^{N}\left(\frac{X}{Y},\frac{\zeta}{Y},P^{2},t\right) - \frac{1}{4}\frac{\left(\zeta/Y\right)^{2}}{1-\zeta/Y}E^{N}\left(\frac{X}{Y},\frac{\zeta}{Y},P^{2},t\right)\right] \\ &+ \quad c_{2}(\zeta,t)\sqrt{\frac{t-t_{o}}{2M}}E^{N}\left(\frac{X}{Y},\frac{\zeta}{Y},P^{2},t\right) \end{split}$$

S.L. and S.Taneja

³He

S. Scopetta

F. Cano and B

Deuteron (data from Hc Mazouz et al.) Extracting GPDs from Cross Sections and Beam Spin Asymmetries

BH, DVCS and Interference contributions azymuthal dependence written explicitely (Belitsky, Muller, Kirchner)

$$\begin{split} \mathcal{T}_{BH}^{2} &= \frac{e^{6}(1+\epsilon^{2})^{-2}}{x_{A}^{2}y^{2}t\,\mathcal{P}_{1}(\varphi)\mathcal{P}_{2}(\varphi)}\sum_{n=0}^{n=2}c_{n}^{BH}\cos\left(n\varphi\right),\\ |\mathcal{T}_{DVCS}^{\lambda}|^{2} &= \frac{e^{6}}{y^{2}Q^{2}}\sum_{n=0}^{n=2}\left\{c_{n}^{DVCS}\cos\left(n\varphi\right) + \lambda s_{n}^{DVCS}\sin\left(n\varphi\right)\right\},\\ \mathcal{I}^{\lambda} &= \frac{e^{6}}{x_{A}y^{3}t\,\mathcal{P}_{1}(\varphi)\mathcal{P}_{2}(\varphi)}\sum_{n=0}^{n=3}\left\{c_{n}^{\mathcal{I}}\cos\left(n\varphi\right) + \lambda s_{n}^{\mathcal{I}}\sin\left(n\varphi\right)\right\}. \end{split}$$

Coefficients correspond to the L,T,LT,TT,LT', ... terms in the x-sec.

4He: Spin 0 Bethe-Heitler

$$c_{0}^{BH} = \left[\left\{ (2-y)^{2} + y^{2}(1+\epsilon^{2})^{2} \right\} \left\{ \frac{\epsilon^{2}Q^{2}}{t} + 4(1-x_{A}) + (4x_{A}+\epsilon^{2})\frac{t}{Q^{2}} \right\} + 2\epsilon^{2} \left\{ 4(1-y)(3+2\epsilon^{2}) + y^{2}(2-\epsilon^{4}) \right\} - 4x_{A}^{2}(2-y)^{2}(2+\epsilon^{2})\frac{t}{Q^{2}} + 8K^{2}\frac{\epsilon^{2}Q^{2}}{t} \right] F_{A}^{2}, \qquad (24)$$

$$c_1^{BH} = -8(2-y)K\left\{2x_A + \epsilon^2 - \frac{\epsilon^2 Q^2}{t}\right\}F_A^2,$$
(25)

$$c_2^{BH} = 8K^2 \frac{\epsilon^2 Q^2}{t} F_A^2, \tag{26}$$

DVCS

 $c_0^{DVCS}=2(2-2y+y^2)\,\mathcal{H}_A\mathcal{H}_A^\star,$

Interference

$$\begin{split} c_0^{\mathcal{I}} &= -8(2-y)\frac{t}{Q^2}F_A \,\Re e\{\mathcal{H}_A\} \\ &\times \left\{ (2-x_A)(1-y) - (1-x_A)(2-y)^2 \left(1-\frac{t_{min}}{Q^2}\right) \right\}, \\ c_1^{\mathcal{I}} &= 8K(2y-y^2-2)F_A \,\Re e\{\mathcal{H}_A\}, \\ s_1^{\mathcal{I}} &= 8Ky(2-y)F_A \,\Im m\{\mathcal{H}_A\}. \end{split}$$

Interference between BH and DVCS from Nuclear Beam Spin Asymmetry

Nuclear Beam Spin Asymmetry S.L., S.K. Taneja, PRC 72 (2005) 034902, PRC 72 (2005) 032201

$$A_{LU}^{(A)} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \approx \frac{s_1^{\mathcal{I}}}{c_o^{BH}} \sin \phi$$

$$s_1^{\mathcal{I}} \propto \Im m \, \mathcal{H}_A \, F_A(t)$$
 $c_o^{BH} \propto \left[F_A(t)\right]^2$

$$\Im m \mathcal{H}_A(X,\zeta,t) = -\pi \sum_q e_q^2 \left[H_A^q(\zeta,\zeta,t) + H_A^{\bar{q}}(\zeta,\zeta,t) \right]$$

(Kirchner and Mueller, 2004)

Coherent vs. Incoherent processes

Similarly for Bethe Heitler processes from nuclei

 \Rightarrow Interference Term for Coeherent DVCS & BH

Non-forward spectral $\mathcal{I}_{coh}(\zeta,t) = \mathcal{K} H^{A}(\zeta,t) \times Z^{2}F^{A}(t)$ function $H^{A}(\zeta,t) = \int \frac{d^{2}P_{\perp}dY}{2(2\pi)^{3}} \mathcal{N} \rho^{A}(Y,P^{2};\zeta,t)H^{N}\left(\frac{\zeta}{Y},\frac{\zeta}{Y},t;P^{2};\right)$ $\uparrow \text{ off-forward EMC-effect } \uparrow$

 \Rightarrow Interference Term for Incoeherent DVCS & BH

 $\mathcal{I}_{inc}(\zeta, t) = \mathcal{K}H_0^A(\zeta, t) \times ZF_1^N(t)$

Forward spectral function

$$H_0^A(\zeta,t) = \int \frac{d^2 P_\perp dY}{2(2\pi)^3} \mathcal{N} \rho_0^A(Y,P^2) H^N\left(\frac{\zeta}{V},\frac{\zeta}{V},t;P^2\right)$$

Hermes \Rightarrow first data Phys.Rev.C81 (2010)

Beam Charge Asymmetry

Beam Spin Asymmetry

 $R_{LU}^{sin\phi}(A/p) = 0.91 \pm 0.19$ coherent $R_{LU}^{sin\phi}(A/p) = 0.93 \pm 0.23$ incoherent

Jlab/Hall B analysis (K. Hafidi et al.) in progress (talk by H. Egiyan at DIS 2

Main issue and Models

S. Scopetta, Phys.Rev.C79 (2009)

Remark again "conventional" nuclear effects

Guzey and Siddikov (2006)

Introduce meson d.o.f. \Rightarrow "pion excess" model

Liuti and Taneja (2005)

Effect is related to transverse motion of quarks

<u>Moral</u>: do exclusive experiments help us understand nuclear medium modifications and/or QCD in nuclei or are we back to square one?

(to the Everyone's Model's Cool effect? G.Miller)

Explanation of Result

Why larger dip?

 $\begin{array}{l} \underline{\text{Using LC approx.:}} & \hline H_A(X,t) \approx H_N(X/(1-\langle E(t) \rangle / M) \\ \\ \langle E(t) \rangle \approx \langle E(t=0) \rangle \to \text{no sensible difference} \\ \\ \underline{\text{Using Active-}k_{\perp}:} & \hline H_A(X,t) \approx H_N(X/(\langle Y(P^2,t) \rangle) \\ \\ \langle Y(P^2,t) \rangle \neq \langle Y(P^2,t=0) \rangle \ !! \end{array}$

• Similarly for k_{\perp} -dependent mechanism giving anti-shadowing

Effect due to "non-trivial" t dependence of higher moments in nuclei GPDs trigger on k_{\perp} dependent effects!!

Brodsky, Yang, Schmidt, PRD (2

Figure 2: Glauber-Gribov shadowing involves interference between rescattering amplitudes.

Brodsky: the Glauber-Gribov picture involves interference between rescattering amplitudes

S.L. and Taneja: these effects, by "tagging" on transverse components are enhanced in exclusive experiments

Nuclei are a unique handle to test/highlight role of partons multi-correlations, ISI and FSI!

Nuclear Exclusive: Form Factor in Nuclei

S.L., hep-ph/0601125

$$F_A(t) = \int_0^A dx H_A(x,t)$$

$$F_A^{LC}(t) = F_A^{point}(t)F_N(t)$$

$$F_A(t) = \int_X^A dY \int dP^2 \rho_A(Y,t;P^2) H_N\left(\frac{X}{Y},t;P^2\right)$$

$$\hat{F}_1^N(t) = \left[\frac{F^A(t)}{F^A_{LC}(t)}\right]F_1^N(t)$$

 \uparrow Medium Modified Form Factor \uparrow

Form Factor in Nuclei S.L., hep-ph/0601125

Conclusions and Outlook

- In exclusive experiments in the MEIC range nuclei provide an even better laboratory to study QCD in coordinate space: vast phenomenology...
- We have seen more constraints on GPDs from nuclei...
- …and at the same time new insights on nuclear modifications from GPDs
- Re-interactions are important and emphasize transverse d.o.f.: need to explore connections between k_T and b (tomorrow's talk)
- Comparison between GPD models and data is indeed possible...GPD extraction is possible!!!
- "Global Analysis" is an essential step