Superfast Quarks: Theory Overview

Misak Sargsian

Florida International University

Argonne 7-9-April, 2006

How to get nucleons close together

Inclusive (e,e') Scattering at large Q2 and x > 1

Frankfurt, Strikman, Phys.Rep 1988

 $\frac{A_2\sigma[A_1(e,e')]}{A_1\sigma[A_2(e,e')]}$ XR

Frankfurt, Strikman, Phys.Rep 1988

 $\frac{A_2\sigma[A_1(e,e')]}{A_1\sigma[A_2(e,e')]}$ XR

Calculations

Day,Frankfurt, MS, Strikman, PRC 1993

	$a_{2N}(A)$
³ He	$0.080 \pm 0.000 \pm 0.004$
$^{4}\mathrm{He}$	$0.154 \pm 0.002 \pm 0.033$
^{12}C	$0.193 \pm 0.002 \pm 0.041$
56 Fe	$0.227 \pm 0.002 \pm 0.047$

	$a_{3N}(A)$
0.0018±	0.000 ± 0.0006
0.0042±	0.0002 ± 0.0014
$0.0055 \pm$	0.0003±0.0017
0.0079±	0.0003 ± 0.0025

Nucleai probed up to 500 MeV/c

Nucleai probed up to 500 MeV/c

Deep Inelastic Scattering at x>1

Deep Inelastic Scattering at x>1

Deep Inelastic Scattering at x>1

Consider: Deuteron

 $x_0 > x$

 x_0

Convolution Model

$$F_{2d} = \int_{x}^{2} \rho_d^N(\alpha, p_t) F_{2N}(\frac{x}{\alpha}, Q^2) \frac{d^2 \alpha}{\alpha} d^2 p_t$$

$$F_{2N} \to F_{2N}^{mod}$$

Convolution Model

$$F_{2d} = \int_{x}^{2} \rho_d^N(\alpha, p_t) F_{2N}(\frac{x}{\alpha}, Q^2) \frac{d^2 \alpha}{\alpha} d^2 p_t$$

$$F_{2N} \to F_{2N}^{mod}$$

Convolution Model

$$F_{2d} = \int_{x}^{2} \rho_d^N(\alpha, p_t) F_{2N}(\frac{x}{\alpha}, Q^2) \frac{d^2 \alpha}{\alpha} d^2 p_t$$

$$F_{2N} \to F_{2N}^{mod}$$

Quark-Cluster - 6q - Model

$F_{2D} = F_{2,(6q)} \sim (1 - \frac{x}{2})^{10}$

Lassila, Sukhatme, PLB 1988

Quark-Cluster - 6q - Model

$F_{2D} = F_{2,(6q)} \sim (1 - \frac{x}{2})^{10}$

Lassila, Sukhatme, PLB 1988

Quark-Cluster - 6q - Model

$F_{2D} = F_{2,(6q)} \sim (1 - \frac{x}{2})^{10}$

Lassila, Sukhatme, PLB 1988

Hard Gluon-Exchange Model

$$\mathcal{M}^{\mu} = \int \frac{\Psi_{d}(\alpha, p_{t})}{(1-\alpha)} \frac{d\alpha}{\alpha} \frac{d^{2}p_{t}}{2(2\pi)^{3}} \times \\ \bar{u}(k_{f})[e_{q}\gamma^{\mu}]u_{\zeta'}(k_{f}-q) \frac{1}{(k_{f}-q)^{2}-m_{q}^{2}} \bar{u}_{\zeta'}(k_{f}-q)[gT^{a}\gamma^{\nu_{1}}]u_{\zeta}(k_{1}) \frac{\psi_{N}(y_{1},k_{1t})}{y_{1}} \\ \bar{u}_{\eta'}(k_{f2})[gT^{b}\gamma^{\nu_{2}}]u_{\eta}(k_{2}) \frac{\psi_{N}(y_{2},k_{2t})}{y_{2}} \frac{d^{\nu_{1},\nu_{2}}\delta_{ab}}{(k_{2}-k_{f2})^{2}} \\ F_{2d} = W^{++} \cdot \nu \left(\frac{m_{N}}{p_{d+}}\right)^{2} \qquad W^{++} = \frac{1}{4\pi m_{d}} \int |\mathcal{M}^{+}|^{2} dQ$$

$$\gamma_{R,L} = \gamma_x \pm \gamma_y$$

$$\gamma_L \qquad \gamma_L \qquad \gamma_{+} \qquad \gamma_{\pm} = \gamma_0 \pm \gamma_z$$

$$y_1, k_{1t} \qquad \gamma_R \qquad x_2, r_t$$

$$y_2, k_{2t} \qquad \gamma_R \qquad x_2, r_t$$

$$kernel = \sqrt{xx_2}(1-\alpha)\alpha(1-\frac{x}{y_1+y_2})\frac{8p_{d+}}{((1-\alpha)y_1+\alpha y_2)r_t^2}$$

$$F_{2D} \approx N \left[\int \psi_d(\alpha, p_t) \cdot \frac{d\alpha}{\alpha} \frac{d^2 p_t}{2(2\pi)^3} \right]^2 \times \\ \times \int_{0}^{1} \int_{0}^{1} \left(1 - \frac{x}{y_1 + y_2} \right)^2 \theta(y_1 + y_2 - x) f_1(y_1) f_2(y_2) dy_2 dy_1$$

-This may be unique to DIS

Superfast quarks in Heavy Nuclei

A/d Ratios with Parton Evalution

 DIS reactions at x>1 may allow to probe the content of the nuclear core

 It may allow to study the hadron-quark transition at short space time separation in nuclei

- EIC will allow to probe superfast qarks at larger Q2 and smaller x