Unravelling the Structure of the Pion

Ian Cloët Argonne National Laboratory

Nuclear Physics Symposium: Exploring the Heart of Matter Chicago

26-27 September 2014

Office of Science

Sentiments from Theorists

- Craig is on a trip to Trento and Huelva but sends his best wishes to Roy
- This work started when Roy walked into Craig's office in the late 90s and asked if he could calculate the pion's quark distribution function

General sentiments from theorists:

I gave a theory talk about X – thinking it would never be measured – but then Roy came up to me afterwards and said I think I know how to measure this

"He is a very stimulating colleague who knows the value of close interchange with theorists – if only there were more like him!"

The Pion – Nature's strong messenger

- Hideki Yukawa in 1935 postulated a strongly interacting particle of mass ~ 100 MeV
 - Yukawa called this particle a "meson"
- Cecil Powell in 1947 discovered the π-meson from cosmic ray tracks in a photographic emulsion – a technique Cecil developed

- Cavendish Lab had said method is incapable of "reliable and reproducible precision measurements"
- The measured *pion* mass was $\sim 130 150 \, \text{MeV}$
- Fittingly, both Yukawa & Powell received Nobel Prize – in 1949 and 1950 respectively
- Discovery of pion beginning of particle physics;
 before long there was the particle zoo

The Pion in QCD

 Today the pion is understood as both a bound state of a dressed-quark and a dressed-antiquark in QFT and the Goldstone mode associated with DCSB in QCD

This dichotomous nature has numerous ramifications, e.g.:

 $m_{
ho}/2 \sim M_N/3 \sim 350 \, {\rm MeV}$ however $m_{\pi}/2 \simeq 0.2 \times 350 \, {\rm MeV}$

- The pion is unusually light, the key is dynamical chiral symmetry breaking
 - curiously in coming to understand the pion's mass, DCSB has been exposed as the origin of more than 98% of the mass in the visible Universe
- QCD is characterized by two emergent phenomena: *confinement & DCSB*
 - it is also the only known example in nature of a fundamental QFT that is innately non-perturbative
- In the quest to understand QCD must discover the origin of confinement, its relationship to DCSB and understand how these phenomenon influence hadronic obserables

QCDs Dyson-Schwinger Equations

- lacktriangle The equations of motion of QCD \Longleftrightarrow QCDs Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - must implement a symmetry preserving truncation
- lacktriangle The most important DSE is QCDs gap equation \Longrightarrow quark propagator

ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

- lacktriangleq S(p) has correct perturbative limit
- $M(p^2)$ exhibits dynamical mass generation \iff DCSB
- \bullet S(p) has complex conjugate poles
 - no real mass shell ⇐⇒ confinement

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame dependent concept
 - boost operators are dynamical, that is, they are interaction dependent
- In high energy scattering experiments particles move at near speed of light
 - natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- lacktriangle Light-front quantization \Longrightarrow light-front WFs; many remarkable properties:
 - frame-independent; probability interpretation as close as QFT gets to QM
 - boosts are kinematical *not dynamical*
- Parton distribution amplitudes (PDAs) are (almost) observables & are related to light-front wave functions

$$\varphi(x) = \int d^2 \vec{k}_\perp \; \psi(x, \vec{k}_\perp)$$

Pion's Parton Distribution Amplitude

- pion's PDA $\varphi_{\pi}(x)$: is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state
 - it's a function of the light cone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2

PDAs enter numerous hard exclusive scattering processes

Pion's Parton Distribution Amplitude

- pion's PDA $\varphi_{\pi}(x)$: is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state
 - it's a function of the lightcone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2
- The pion's PDA is defined by

$$f_{\pi} \varphi_{\pi}(x) = Z_2 \int \frac{d^4k}{(2\pi)^2} \delta\left(k^+ - x p^+\right) \operatorname{Tr}\left[\gamma^+ \gamma_5 S(k) \Gamma_{\pi}(k, p) S(k - p)\right]$$

- $S(k) \Gamma_{\pi}(k,p) S(k-p)$ is the pion's Bethe-Salpeter wave function
 - in the non-relativistic limit it corresponds to the Schrodinger wave function
- $\varphi_{\pi}(x)$: is the axial-vector projection of the pion's Bethe-Salpeter wave function onto the light-front [pseudo-scalar projection also non-zero]
- ullet Pion PDA is an essentially nonperturbative quantity whose asymptotic form is known; in this regime governs, e.g., Q^2 dependence of pion form factor

$$Q^2 F_{\pi}(Q^2) \stackrel{Q^2 \to \infty}{\longrightarrow} 16 \pi f_{\pi}^2 \alpha_s(Q^2) \qquad \iff \qquad \varphi_{\pi}^{\text{asy}}(x) = 6 x (1 - x)$$

QCD Evolution & Asymptotic PDA

lacktriangle ERBL (Q^2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

$$\mu \frac{d}{d\mu} \varphi(x,\mu) = \int_0^1 dy \ V(x,y) \varphi(y,\mu)$$

This evolution equation has a solution of the form

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum\nolimits_{n=2,\,4,\dots} \, a_n^{3/2}(Q^2) \, C_n^{3/2}(2x-1) \right]$$

- $\alpha=3/2$ because in $Q^2\to\infty$ limit QCD is invariant under the collinear conformal group $SL(2;\mathbb{R})$
- \bullet Gegenbauer- $\alpha=3/2$ polynomials are irreducible representations $SL(2;\mathbb{R})$
- The coefficients of the Gegenbauer polynomials, $a_n^{3/2}(Q^2)$, evolve logarithmically to zero as $Q^2 \to \infty$: $\varphi_{\pi}(x) \to \varphi_{\pi}^{asy}(x) = 6 \, x \, (1-x)$
- At what scales is this a good approximation to the pion PDA?
- E.g., AdS/QCD find $\varphi_{\pi}(x) \sim x^{1/2} (1-x)^{1/2}$ at $Q^2 = 1 \text{ GeV}^2$; expansion in terms of $C_n^{3/2}(2x-1)$ convergences slowly: $a_{32}^{3/2}/a_2^{3/2} \sim 10\%$

Pion PDA from the DSEs

- Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a pronounced broadening compared with the asymptotic pion PDA
 - $\bullet\,$ scale of calculation is given by renormalization point $\zeta=2\,\mathrm{GeV}$
- Broading of the pion's PDA is directly linked to DCSB
- ullet As we shall see the dilation of pion's PDA will influence the Q^2 evolution of the pion's electromagnetic form factor

Pion PDA from lattice QCD

Lattice QCD can only determine one non-trivial moment

$$\int_0^1 dx \, (2x-1)^2 \varphi_{\pi}(x) = 0.27 \pm 0.04$$

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

• Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum\nolimits_{n=2,\,4,\dots} \, a_n^{3/2}(Q^2) \, C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2 \to \infty$
- this procedure results in a double-humped pion PDA
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha - 1/2} (1 - x)^{\alpha - 1/2} \left[1 + \sum_{n=2, 4, \dots} a_n^{\alpha}(Q^2) C_n^{\alpha}(2x - 1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha} (1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \simeq 0.30$

Pion PDA from lattice QCD

 Lattice QCD can only determine one non-trivial moment

$$\int_0^1 dx \, (2x-1)^2 \varphi_{\pi}(x) = 0.27 \pm 0.04$$

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

• Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6\,x\,(1-x)\left[1+\,\sum\nolimits_{n=2,\,4,\dots}\,a_n^{3/2}(Q^2)\,C_n^{3/2}(2x-1)\right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2 \to \infty$
- this procedure results in a double-humped pion PDA
- Advocate using a generalized expansion

$$\varphi_{\pi}(x, Q^2) = N_{\alpha} x^{\alpha - 1/2} (1 - x)^{\alpha - 1/2} \left[1 + \sum_{n=2, 4, \dots} a_n^{\alpha}(Q^2) C_n^{\alpha}(2x - 1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha} (1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \simeq 0.30$

When is the Pion's PDA Asymptotic

- Under leading order Q^2 evolution the pion PDA remains broad to well above $Q^2 > 100 \, \text{GeV}^2$, compared with $\varphi_{\pi}^{\text{asy}}(x) = 6 \, x \, (1 x)$
- Consequently, the asymptotic form of the pion PDA is a poor approximation at all energy scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors
- Importantly, $\varphi_{\pi}^{\rm asy}(x)$ is only guaranteed be an accurate approximation to $\varphi_{\pi}(x)$ when pion valence quark PDF satisfies: $q_v^{\pi}(x) \sim \delta(x)$
- This is far from valid at forseeable energy scales

When is the Pion's Valence PDF Asymptotic

LO QCD evolution of momentum fraction carried by valence quarks

$$\left\langle x\,q_v(x)\right\rangle(Q^2) = \left(\frac{\alpha_s(Q^2)}{\alpha_s(Q^2_0)}\right)^{\gamma_{qq}^{(0)2}/(2\beta_0)} \left\langle x\,q_v(x)\right\rangle(Q^2_0) \quad \text{where} \quad \frac{\gamma_{qq}^{(0)2}}{2\beta_0} > 0$$

- therefore, as $Q^2 \to \infty$ we have $\langle x q_v(x) \rangle \to 0$ implies $q_v(x) = \delta(x)$
- At LHC energies valence quarks still carry 20% of pion momentum
 - the gluon distribution saturates at $\langle x\,g(x)\rangle\sim 55\%$
- Asymptotia is a long way away!

Pion Elastic Form Factor

- Extended the pre-experiment DSE prediction to $Q^2 > 4 \,\mathrm{GeV^2}$
- Predict max at $Q^2 \approx 6 \, \text{GeV}^2$; within domain accessible at JLab12
- Magnitude directly related to DCSB

The QCD prediction can be expressed as

$$Q^{2}F_{\pi}(Q^{2}) \overset{Q^{2} \gg \Lambda_{\text{QCD}}^{2}}{\sim} 16 \pi f_{\pi}^{2} \alpha_{s}(Q^{2}) w_{\pi}^{2}; \qquad w_{\pi} = \frac{1}{3} \int_{0}^{1} dx \frac{1}{x} \varphi_{\pi}(x)$$

- Using $\varphi_{\pi}^{\rm asy}(x)$ significantly underestimates experiment
- Within DSEs there is consistency between the direct pion form factor calculation and that obtained using the DSE pion PDA
 - 15% disagreement explained by higher order/higher-twist corrections
- lacktriangle We predict that QCD power law behaviour sets in at $Q^2 \sim 8\, ext{GeV}^2$

Pion PDF

- Need for QCD-based calculation is emphasized by story of pion's valence quark distribution function:
 - 1989: $u_v^{\pi} \stackrel{x \to 1}{\sim} (1-x)^1$ inferred from LO-Drell-Yan & disagrees with QCD
 - Roy talks to Craig about the pion PDF
 - 2001: DSEs predicts $u_v^\pi \stackrel{x \to 1}{\sim} (1-x)^2$ argues that distribution inferred from data can't be correct
 - 2010: new NLO reanalysis including soft-gluon resummation inferred distribution agrees with DSE-QCD

PDFs and lattice QCD

- PDFs enter DIS cross-sections & are critial components of hadron structure
 - PDFs e.g. $q(x,Q^2)$ are Lorentz invariant and are functions of the light cone momentum fraction $x=\frac{k^+}{p^+}$ and the scale Q^2
 - $q(x,Q^2)$: probability to strike a quark of flavour q with light cone momentum fraction x of the target momentum
- PDFs represent parton correlations along the light cone and are inherently Minkowski space objects
 - lattice QCD, which is definied in Euclidean space, cannot directly calculate PDFs
 - further, since lattice only possesses hypercubic symmetry, only the first few moments of a PDF can be accessed in contemporary simulations

$$q(x,Q^2) = \int \frac{d\xi^-}{2\pi} e^{ip^+\xi^- x} \times \langle P|\overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-)|P\rangle$$

PDFs and Quasi-PDFs

- In PRL 110 (2013) 262002 Xiangdong Ji proposed a method to access PDFs on the lattice via Quasi-PDFs
 - may people where already aware of this idea but Ji put it on a firmer footing theoretically
- Quasi-PDFs represent parton correlations along the z-direction $\left[\tilde{x} = \frac{k_z}{p_z}\right]$

$$\tilde{q}(\tilde{x}, Q^2, p_z) = \int \frac{d\xi_z}{2\pi} e^{ip_z \, \xi_z \, \tilde{x}} \langle P | \overline{\psi}_q(0) \, \gamma_z \, \psi_q(\xi_z) | P \rangle$$

$$c.f. \quad q(x, Q^2) = \int \frac{d\xi^-}{2\pi} e^{ip^+ \, \xi^- \, x} \langle P | \overline{\psi}_q(0) \, \gamma^+ \, \psi_q(\xi^-) | P \rangle$$

- $\bullet \ \ \text{in limit} \ \ p_z \to \infty \ \ \text{then} \ \ \tilde{q}(\tilde{x},Q^2,p_z) \to q(x,Q^2) \ ; \ \ \text{corrections} \ \mathcal{O}\Big[\frac{M^2}{p_z^2},\frac{\Lambda_{\text{QCD}}^2}{p_z^2}\Big]$
- lacktriangleq $ilde{q}$ depends on p_z & is therefore not a Lorentz invariant; $ilde{x}$ not bounded by p_z :

$$-\infty < \tilde{x} = \frac{k_z}{p_z} < \infty;$$
 c.f. $0 < x = \frac{k^+}{p^+} < 1$

Need to put fast moving hadron on a lattice; but when is p_z large enough?

Pion Quasi-PDFs from DSEs

- Using the DSEs we can determine both the PDFs and Quasi-PDFs
 - can then infer how large p_z must be to have $\tilde{q}(\tilde{x},Q^2,p_z)\simeq q(x,Q^2)$
- For $p_z \lesssim 1 \, \text{GeV}$ find that quark distribution has sizeable support for $\tilde{x} < 0$
 - ullet this is in constrast to PDFs, however it is natural since k_z can be negative
- lacktriangle For $p_z \simeq 4\,\mathrm{GeV}$ find that the pion PDF and quasi-PDF are very similar
 - pion likely best case scenario, e.g., nucleon likely has large $\frac{M^2}{p_z^2}$ corrections
- Quasi-PDFs do not give parton momentum fractions [Y. Ma & J. Qiu arXiv:1404.6860]

All results in chiral limit

$$\langle \tilde{x}\,\tilde{q}_z(x)\rangle_{p_z=1\,\text{GeV}} = 0.53 \ (14\%)$$

$$\langle \tilde{x} \, \tilde{q}_z(x) \rangle_{p_z=2 \, \text{GeV}} = 0.49 \quad (5\%)$$

$$\langle \tilde{x} \, \tilde{q}_z(x) \rangle_{p_z=4 \, \text{GeV}} = 0.48 \quad (3\%)$$

$$\langle \tilde{x} \, \tilde{q}_z(x) \rangle_{n_z = \infty} = 0.47$$

Conclusion

- QCD and therefore hadron physics is unique:
 - must confront a fundamental theory in which the elementary degrees-of-freedom are confined and only hadrons reach detectors
- A solid understanding of the pion is critical
 - Both DSEs and lattice QCD agree that the pion PDA is significantly broader than the asymptotic result
 - $\bullet\,$ using LO evolution find dilation remains significant for $Q^2>100\,{\rm GeV^2}$
 - asymptotic form of pion PDA only guaranteed to be valid when $q_v^\pi(x) \propto \delta(x)$
- Determined the pion form factor for all spacelike momenta
 - $Q^2 F_{\pi}(Q^2)$ peaks at $6 \, {\rm GeV^2}$, with maximum directly related to DCSB
 - predict that QCD power law behaviour sets in at $Q^2 \sim 8 \, {\rm GeV^2}$
- Thanks to Roy's question to Craig about 15 years ago we have now developed a deep understanding of pion structure!