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ABSTRACT

Ytterbium (Yb) atoms frozen in a solid neon (Ne) matrix qualitatively retain the structure

of free atoms. Yb transitions are found to be mostly blue-shifted in both absorption and

emission spectra. Transitions also acquire significantly broadened linewidth, which can be a

few nanometers for outer-shell transitions and as narrow as 0.03 nm (or 120 GHz) for inner-

shell transitions. We explicitly demonstrate that the linewidth broadening is homogeneous

for the 6s2 1S0 − 6s6p 1P1 transition. Splitting of transitions is observed as well, and is

attributed to the broken spherical symmetry of the Yb trapping sites in solid Ne.

The lifetimes of 6s6p 3P0,1 in both 171Yb and 172Yb are measured in solid Ne using the

spectrally-resolved fluorescence-decay technique. The finite vacuum lifetime of 6s6p 3P0 in

171Yb is due to the hyperfine quenching, and gives the natural linewidth of the Yb clock

transition. With the measurements in solid Ne, we extract this vacuum lifetime for the

first time after correcting for various medium effects. One effect is the index-of-refraction

dependence of the spontaneous emission, of which we perform an independent calibration

based on the 6s6p 3P1 lifetime in vacuum and in solid Ne. We obtain a vacuum decay rate

of (4.42± 0.35)× 10−2 s−1 for 6s6p 3P0 in 171Yb, which agrees with a recent calculation.

The feasibility of optically polarizing 171Yb nuclei in solid Ne is discussed. The excitation

rate of Yb transitions in solid Ne is suppressed by the same factor by which the absorption

linewidth is broadened. The optical pumping efficiency for nuclear spins is estimated to

be further suppressed by four orders of magnitude due to the presence of the crystal field.

Finally, a few experiments are proposed as the applications of our techniques or ways to

further understand the system of impurity atoms in solid noble gases.
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CHAPTER 1

INTRODUCTION

1.1 Matrix Isolated Atoms

The interest of studying a guest species isolated in a noble-gas solid originally lies in the

fact that chemically unstable molecules and free radicals in the gas phase remain stable

in these inert solids and thus can be spectroscopically studied at leisure [1]. In addition,

matrix isolation spectroscopy has more advantages over gas-phase spectroscopy including the

possibility of simultaneously studying multiple transitions and studying states not accessible

from the ground state by an allowed transition [2]. In the case of large molecules such as

aromatic hydrocarbons, the absorption and emission lines are so narrow in a matrix that

single-molecule spectroscopy has been demonstrated [3].

In contrast, matrix isolated atoms are not suitable for precision spectroscopy because the

electronic levels of these trapped atoms are usually broadened to a few hundred cm−1 [4].

This can be explained by the different atom-matrix coupling when the atom is in the lower

and upper states [5]. This phenomenon is quite similar to the way that an atom interacts

with other atoms in a molecule [6]. However, since matrix isolation provides an efficient

trapping, a high density, and a stable confinement for the atoms of interest, this technique has

potential for applications including measuring lifetimes of forbidden transitions [7], building

optical magnetometers [8], studying rare isotopes [9], catching and detecting rare decay

products [10], and testing fundamental symmetries [11].

In particular, the applications of building optical magnetometers and searching for the

electron’s electric dipole moment rely on the prerequisite that the electronic spins of matrix

isolated atoms can be efficiently polarized by optical pumping and the spin relaxation times

are reasonably long in the matrix. Efforts to polarize alkali atoms isolated in noble-gas solids

by optical pumping were pioneered by F. Pipkin and his colleagues in the 1960’s [12, 13]. Al-

though not accomplished then, with the greatly improved pumping rate due to the invention
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of lasers, optically polarizing the electronic spins of alkali atoms isolated in condensed noble

gases is now a mastered technique. The electronic-spin relaxation times have been measured

to be somewhere between a tenth of a second and a few seconds [14, 15, 8]. On a different

path, it has also been demonstrated that polarization of impurity ions is achieved by optical

pumping in some ionic crystals where the magnetic circular dichroism is large [16, 17].

1.2 Motivations

The work presented in this dissertation was originally motivated to investigate the feasibility

of optically polarizing the nuclear spins of diamagnetic atoms isolated in noble-gas solids.

Such a technique has never been reported in literature. To our interest, once this is successful,

the system opens up the potential for measuring the nuclear Schiff moment [18] of heavy

neutral atoms in a solid matrix. The relaxation times of nuclear spins in noble-gas solids are

known to be very long due to their weak coupling to the environment [19]. Conventionally,

the nuclear polarization of a condensed matter sample is created by the Boltzmann factor

at high fields and low temperatures [20]. But the optical-pumping method provides a much

more efficient and controllable way. Because photons only strongly interact with atomic

electrons, optical creation of nuclear polarization in a matrix requires that the hyperfine

interaction is not significantly perturbed.

As a test case, we use Yb atoms as the guest species and solid Ne as the host matrix. Yb

is a diamagnetic atom, and its ground level is 1S0 where the electronic spin is zero. Yb has

an abundant isotope 171Yb with nuclear spin 1/2, which is an ideal candidate for studying

nuclear magnetic resonance due to the absence of the electric quadrupole moment [21]. We

choose solid Ne as the matrix because Ne is easier to solidify than He and interacts more

weakly with the guest species than heavier noble gases [22]. The nuclear-spin relaxation

times of 21Ne nuclei have also been measured in solid Ne [23]. The spin-lattice relaxation

time is about a few hundred seconds, and the spin-spin relaxation time is about a few seconds

at the melting point (25 K) and decreases to a few millisecond at 15 K.
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Although we have not yet observed the nuclear polarization signal of 171Yb in solid Ne,

with that goal in mind we have obtained many interesting results including the observations

that atomic metastable levels persist in a matrix and that the intersystem crossing between

different spin states is enhanced in a matrix [24], and the measurements of the hyperfine

quenching rate in 171Yb and enhanced spontaneous emission rates in a medium [7]. Moreover,

we have gained some understanding of how the solid Ne matrix alters the atomic structure

of the trapped Yb so as to lay the foundation for future efforts on nuclear polarization by

optical pumping in noble-gas matricies.

1.3 Overview of Dissertation

This dissertation is organized as follows. In Chapter 2, I will describe the recipe for preparing

the Yb/Ne samples. In Chapter 3, I will present the results on optical spectroscopy with

explanations for the linewidth broadening and the line splitting in a matrix. In Chapter 4,

I will present the lifetime measurements of the two lowest excited levels 6s6p 3P0,1 of Yb

in solid Ne. In Chapter 5, I will discuss the possibility of optically polarizing 171Yb nuclei

in solid Ne based on the results in the previous chapters. In Chapter 6, I will give a brief

summary of the current work and some suggestions for future work.

Finally, I have compiled many technical details such as equation solving, dead-time cor-

rection, matrix diagonalization, pumping-rate calculation, and magnetic-flux calculation in

the appendices. This by no means implies that these details are not important. On the

contrary, they are some of my most original calculations that provide insights to many of

our observations. The intent of leaving them in the appendices is simply to allow the main

texts to flow more smoothly.
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CHAPTER 2

MATRIX ISOLATION OF YB IN SOLID NE

In this chapter, I will describe how we prepare the Yb/Ne samples. I will first discuss the

relevant physical properties of Yb and Ne, which determine the scheme for matrix isolation

of Yb in solid Ne. Then I will describe the apparatus and the procedure for making samples.

Finally, I will introduce the parameters to characterize the Yb density of the samples.

2.1 Properties of Yb and Ne

Yb is a rare earth and the fourteenth element in the lanthanide series. The pure form of Yb

is a soft, malleable and ductile metal that displays a bright silvery luster [25]. It oxidizes

slowly in air and is stored under the Ar atmosphere in our lab. The sublimation pressure of

Yb (Figure 2.1) is significantly higher than other lanthanides due to the fact that only the

two valence electrons are available for metallic bonding. However, to achieve a significant

vapor pressure for matrix isolation experiments, we are required to use an effusive oven with

a crucible to heat up the Yb sample. Yb with natural isotopic abundance is purchased from

Sigma-Aldrich in the form of chips that are relatively easy to load into the crucible.

Figure 2.1: The sublimation pressure of Yb. Data are taken from Reference [26] and plotted
as open circles. The red curve is a fit with the Clausius-Clapeyron equation.
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We choose solid Ne among other popular host matrices in Table 2.1 for the following

reasons. Compared to other noble gases, Ne has the second smallest polarizability. Therefore

solid Ne is expected to perturb the structure of the guest atom more weakly than heavier

noble gas solids, but more strongly than solid He. However, He is not as technically accessible

as Ne because it only freezes under the pressure of 26 atm. Ne, in contrast, readily solidifies

at 25 K under the atmospheric pressure. Solid para-hydrogen (p-H2) is another commonly

used matrix due to its quantum nature similar to solid He in preserving the symmetry of

the embedded defect [27]. We briefly experimented with isolating Yb in solid H2 and found

that optically excited Yb atoms can react with H2 and form stable molecules.

Table 2.1: Properties of commonly used host matrices [22, 28].

He Ne Ar Kr Xe p-H2

lattice structure hex fcc fcc fcc fcc hex
lattice constant (Å) 3.57 4.43 5.26 5.72 6.20 3.75

density (1022 cm−3) 2.70 4.60 2.75 2.13 1.68 2.68
freezing temperature (K) ∼ 1.0 24.5 83.9 116.5 161.3 14.0
freezing pressure (atm) 26 1 1 1 1 1

polarizability (Å3) 0.204 0.392 1.63 2.47 4.01 0.787

nuclear spin impurities 3He 21Ne / 83Kr 129,131Xe o-H2, HD
natural abundance 1.4 ppm 0.27% / 11.5% 47.6% 115 ppm

For applications requiring long coherence of Yb nuclear spins, we prefer fewer spin im-

purities in the matrix (Section 5.3). One such impurity is the isotopes of the matrix atoms

that possess nonzero nuclear spins. Ne has 0.27% of 21Ne with nuclear spin 3/2 which puts

a limit on the spin-spin relaxation time of Yb atoms. In this respect, solid Ar seems a more

suitable matrix because none of its abundant isotopes has a nonzero nuclear spin. However,

besides a larger polarizability, thick solid Ar samples are not as transparent as solid Ne.

Fortunately, Ne gas with depleted isotope of 21Ne is commercially available.

Perfectly crystallized solid Ne is transparent in the visible-ultraviolet wavelength range.

Its lattice structure is face-centered-cubic with a cubic lattice constant of 4.43 Å. The sub-

limation pressure of solid Ne is shown in Figure 2.2. Under reduced pressures, the freezing

temperature of solid Ne decreases accordingly. Based on our experience, solid Ne samples
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start melting near 8 K, which implies that the vacuum in the cryostat is better than 10−7 Torr

at this temperature (see the extrapolated curve in the right panel of Figure 2.2).

Figure 2.2: The sublimation pressure of Ne. Data are taken from Reference [29] and plotted
as open circles. The red curve is a fit with the Clausius-Clapeyron equation.

2.2 Apparatus and Setup

The most important apparatus for producing the data presented in this dissertation is the

cryostat. The Infrared Laboratories HD-3(8) model we use is a double-vessel liquid He

cryostat that has a liquid N2 capacity of 2.5 L and a liquid He capacity of 2.8 L (Figure 2.3).

The liquid N2 vessel cools down an aluminum shield that surrounds the liquid He vessel and

protects it from any room temperature radiation. Due to the Stefan-Boltzmann law, the

blackbody radiation is reduced by a factor of 200 from 300 K to 80 K. To cool down the

liquid He vessel, we need to precool it by liquid N2 in order to conserve liquid He. Since liquid

He cannot stably exist at room temperature, the transfer of liquid He takes more caution

and tools. The procedure for transferring liquid He from a commercial portable dewar to

the cryostat is given in Appendix A.

The designed hold time of the cryostat with all ports closed and all supports in place

is 36 hours. The actual hold time is, however, only about 8 hours due to the aging of the
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Figure 2.3: A sketch of the Infrared Laboratories HD-3(8) cryostat. This figure is reprinted
from the manufacturer’s catalog.

cryostat and additional heat load imparted to the liquid He. For spectroscopy and lifetimes

studies, this hold time is still sufficient. For experiments that require a longer hold time, we

can always refill the cryostat while maintaining the cold temperature (Appendix A).

The 4 K work surface inside the cryostat is the bottom of the liquid He vessel which has

an area of about 300 cm2. On the vacuum side, a copper substrate mount (Figure 2.4) is

installed to hold the substrate vertically. The mount comes in two pieces. The first piece,

or the base piece, establishes the conduction between the horizontal cold surface and the

vertically oriented substrate. The contact between the cold surface and the base piece is

improved by the low-vapor-pressure cryogenic grease (Apiezon N). The second piece, or the

front piece, clamps the substrate against the vertical part of the base piece with indium wires

used as the “glue”. The front piece is often removed after the substrate has been securely

installed for the sake of a larger aperture.
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Figure 2.4: A sketch of the substrate mount. Image courtesy of T. O’Connor.

The substrates used for most of the times are sapphire windows because of sapphire’s

good transparency in the visible-ultraviolet range, its excellent thermal conductivity at low

temperatures, and its sturdiness that allows for many thermal cycles between the room

temperature and the liquid He temperature [30]. In comparison, fused-silica substrates could

not reach a temperature low enough to freeze solid Ne under the current cooling scheme.

CaF2 substrates are also used from time to time for its good optical transparency, but CaF2

is a fragile material that the substrates easily get cracked either at the installation stage or

after only a few thermal cycles.

For spectroscopy and lifetime studies, we use 1 inch diameter, 0.5 cm thick sapphire

substrates. These substrates are purchased from Thorlabs and cut in a way that the c-axis

of the sapphire crystal is perpendicular to the substrate surface. The surface quality of the

substrates is 60/40 scratch/dig. We also use sapphire with other shapes, including 1/2 inch

diameter, 1 cm long cylinders and 3 cm each side, 0.3 cm thick square substrates. These

more versatile pieces are purchased from Guild Optics and have the same cut and the surface

quality. Before being installed in the cryostat, the substrates are washed in the ultrasonic

cleaner followed by the acetone cleaning.
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The temperature of the substrate is measured by the Lakeshore CX-1050-AA resistance

temperature sensors and read out by the Lakeshore Model 330 temperature controller. We

install two sensors on the substrate holder with one on each piece. When a sapphire substrate

is installed, readings of the two sensors are different by less than 100 mK and are typically

between 4.2 K and 4.7 K. Since the front piece is entirely cooled through its contact with

the substrate, this implies that the substrate is sufficiently cooled for growing solid Ne.

The method of growing Yb/Ne samples is similar to the molecular beam epitaxy [31].

The Ne gas is depleted of H2 and N2 by a noble gas purifier (LDetek LDP1000) and depleted

of H2O by a liquid N2 cooled charcoal trap. It then flows into a reservoir through a leak valve

which controls the reservoir pressure. A 1/4 inch thick flexible stainless steel hose connects

the output of the reservoir and a capillary tube feeding into the cryostat. The capillary tube

points at the substrate 5 cm away from a nearly normal angle. Since the pressure of the

reservoir is much higher than that in the cryostat, the Ne gas flow rate, and thus the solid

Ne growth rate, has a linear dependence on the reservoir pressure.

The Yb atoms are deposited onto the substrate via an atomic beam generated by a

home-made effusive oven with a titanium crucible (Figure 2.5). On the front end of the

crucible, there is a nozzle from which the atomic beam emerges. On the rear end, there is

a slot for a thermocouple used to monitor the temperature. The calculation of the Yb flux

follows Reference [32]. In the molecular flow regime, the flux density of an effusive oven in

the forward direction is

Q =
a

4πd2
nv, (2.1)

where a is the opening area of the oven, d is the distance between the oven and the observation

point, n is the number density of the particles in the oven, and v is the mean velocity of

particles in the beam. From the kinetic theory of gases, we have

n =
p(T )

kBT
and v =

√
3kBT

M
, (2.2)
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where p(T ) is the vapor pressure of the particles as a function of the temperature T , kB is the

Boltzmann constant, and M is the mass of the particle. The Yb flux can also be measured

in the beam using the transverse beam fluorescence method [33]. The transition we use is

6s2 1S0 − 6s6p 1P1 at 398.9 nm in vacuum. The excitation light is obtained by frequency

doubling a Ti:Al2O3 laser. The results of the two methods agree within a factor of a few.

Figure 2.5: A sketch of the Yb oven. Image courtesy of T. O’Connor.

The Yb oven is connected to the cryostat in a way shown in Figure 2.6. There are four 1

inch diameter ports on the perimeter of the cryostat, one of which is connected to the oven

by a 60 cm long beam line. The other three ports are covered with fused silica windows

and used as viewports. Viewports A and B make a π/8 angle with the substrate normal

and are used in the sample thickness measurement and the absorption studies. Viewport C

makes a 3π/8 angle with the substrate normal and is used in the emission studies to collect

fluorescence light from the sample. This arrangement is based on the requirement that the

substrate receives a large fraction of the Yb flux and at the same time the light beam for

absorption studies also probes a large fraction of the sample.

2.3 Sample Growth

The thickness of the solid Ne samples is measured based on the thin-film interference prin-

ciple [34]. A He-Ne laser is split up by a beam-splitter, with one beam shined through the
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Figure 2.6: A sketch that shows the connection between the cryostat and the Yb beam line
as well as the orientation of the cryostat ports with respect to the substrate normal. A, B,
and C are three viewports covered with fused silica windows. D is a six-way cross where the
Yb beam flux can be measured. Image courtesy of T. O’Connor.

growing solid Ne from viewport A to B in Figure 2.6 while the other used as a reference. If

the substrate normal is parallel with AB, then we can either detect the reflection at A or the

transmission at B. The reflection detection is preferable since the interference fringes have a

larger contrast. However, if the substrate is installed as in Figure 2.6, only the transmission

detection is possible.

The power fluctuation of the He-Ne laser is canceled out by the reference beam, but the

polarization and the frequency fluctuations are not. To deal with the polarization fluctuation,

a linear polarizer or a polarization beam-splitter is added before the split point. Therefore

a polarization fluctuation is converted into a power fluctuation. The frequency fluctuation

mainly comes from the temperature fluctuation of the laser. To minimize this, we wait until

the laser fully warms up and reaches a stable temperature.

Figure 2.7 shows a typical set of interference fringes using the reflection signal when the

substrate normal is parallel with AB. The oscillation of the signal is observed to have two

components. The the fast oscillation corresponds to the growth of solid Ne on the front
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surface of the substrate, while the slow oscillation corresponds to the growth on the back

surface. The wavelength of the He-Ne laser is 632 nm, so each fringe roughly corresponds

to a 300 nm thick layer. In total, this particular sample is about 30 µm thick. During the

8-hour long growth, the growth rate has been deliberately changed from about 3 µm/hr to

10 µm/hr to investigate its influence on the sample transparency. As can be seen from the

figure, the contrast of the fringes roughly remains the same throughout the growth.

Figure 2.7: The thin-film interference fringes while growing a solid Ne sample.

To prepare a Yb/Ne sample, we first grow a layer of pure solid Ne by ramping up the

reservoir pressure until the desired growth rate is reached. In order to maintain sample trans-

parency, the initial ramp-up is very gentle which takes about an hour to reach 100 mTorr,

which roughly corresponds to a solid Ne growth rate of 0.25 µm/hr. From that, it usu-

ally takes an hour to further get to 4 Torr (10 µm/hr) and another half hour to 20 Torr

(50 µm/hr). The maximal growth rate we have achieved is about 100 µm/hr. However, at

this rate the solid Ne sample may easily get cracked during the first hour of growth.

Once the desired solid Ne growth rate is reached, we open the gate valve on the Yb

beam line to let Yb atoms deposit on the substrate simultaneously with the growing solid

Ne matrix. After enough Yb atoms are collected in solid Ne, we close the gate valve and cut

off the Ne supply to the reservoir. This way a final layer of solid Ne will grow on top of the

Yb/Ne sample for about half an hour as the reservoir pressure decays.
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2.4 Sample Parameters

For a thin-film sample, both the 3D and the 2D number densities n3 and n2 need to be

specified. They are related through the sample thickness s, n2 = n3s. The Yb 3D density

n3,Yb is most conveniently expressed as the Yb/Ne dilution factor ξ = n3,Yb/n3,Ne, where

the Ne 3D density n3,Ne is given in Table 2.1. The Yb 2D density n2,Yb is related to the

absorbance A(ω) = ln(I0(ω)/I(ω)) = n2,Ybσ
∗(ω), where I0(ω) and I(ω) are the incident and

transmitted intensities of the probe light at angular frequency ω, and σ∗(ω) is the absorption

cross-section in solid Ne. We show in Section 3.3.5 that σ∗(ω0) = σ(ω0)/W , where σ(ω) is

the cross-section in vacuum, ω0 is the resonance frequency, and W is the broadening factor

of the absorption linewidth. σ(ω0) ≡ σ0 = 3λ2
0/2π where λ0 is the resonance wavelength.

While growing Yb/Ne samples, ξ is adjusted by the Yb flux density QYb and the Ne flux

density QNe,

ξ =
n3,Yb

n3,Ne
=
QYb

QNe
. (2.3)

Flux density Q is defined as the number of particles passing through a normal unit area per

unit time, and therefore Q = dn2/dt where n2 is the 2D density of a growing solid made of

these particles. For Yb, we have

QYb =
dn2,Yb

dt
=

1

σ∗(ω0)

∂A(ω0)

∂t
=
W

σ0

∂A(ω0)

∂t
, (2.4)

where W and ∂A(ω0)/∂t can both be measured. For Ne, we have

QNe =
dn2,Ne

dt
= n3,Ne

dsNe

dt
, (2.5)

where dsNe/dt is the solid Ne growth rate which can also be measured using the method

described previously. Therefore we have an expression for ξ all based on measurements,

ξ =
QYb

QNe
=

W

n3,Neσ0

∂A(ω0)

∂t

(
dsNe

dt

)−1

. (2.6)
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We empirically find that single Yb atoms are isolated in solid Ne only when ξ < 5 ppm

at temperatures between 4.2 K and 4.7 K. When ξ > 5 ppm, the probability is significantly

increased that Yb atoms find each other and form clusters in solid Ne. We typically grow

samples with ξ = 1 ppm and dsNe/dt = 50 µm/hr. Under these conditions, n3,Yb = 4.5×1016

cm−3 and QYb = 2.3× 1014 cm−2 ·hr−1. This Yb flux can be achieved by running the oven

at about 620 K. The heat load due to the deposition of Ne and the blackbody radiation from

the Yb oven increases the substrate temperature by less than 50 mK.
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CHAPTER 3

SPECTROSCOPY OF YB IN SOLID NE

In this chapter, results on optical spectroscopy and laser excitation of Yb atoms in solid

Ne are presented. Yb transitions in solid Ne are found to be mostly blue-shifted from their

vacuum positions and broadened by a few orders of magnitude compared with their natural

linewidth. The broadening is mainly due to the different impurity-lattice coupling when

the impurity is in the lower and upper states. For inner-shell transitions of Yb, this effect

is weaker because the valence electrons responsible for coupling with the Ne lattice do not

directly participate in the transitions. Transitions are also split in solid Ne due to the broken

spherical symmetry of the Yb trapping sites. To understand these observations, I will start

with a brief review on the electronic structure of a neutral Yb atom in vacuum.

3.1 Electronic Structure of Yb

A neutral Yb atom has 70 electrons orbiting outside the nucleus. Its ground state is a non-

degenerate 1S0 from the electronic configuration [Xe]4f146s2, and thus has zero electronic

orbital and spin angular momenta. The Yb energy-level diagram (Figure 3.1) and electronic

transitions share some similarities with alkaline earth atoms such as Ba. However, the Yb

spectrum has richer features due to the 4f electrons unique to lanthanides.

The configurations of many low-lying states in Yb result from the elevation of a single

electron. This electron can either be a 6s electron or a 4f electron. Configurations associated

with the 6s-electron elevation look like 4f14nl6s or 4f146snl, where 4f14 can be omitted

for brevity and nl stands for the orbital the 6s electron is elevated to. The resultant states

are described by terms and levels in the LS coupling scheme. Levels of this sort should be

familiar since they are also found in alkaline earth atoms. For example, the 5d6s configuration

contains 3D1,2,3 and 1D2 levels. A brief description of how the wave function of a term is

constructed in the LS coupling scheme is given in Appendix B.
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Figure 3.1: Low-lying terms and transitions of a neutral Yb atom. Upward arrows indicate
allowed electric-dipole transitions from the ground level to five J = 1 levels belonging to
different terms.

Configurations associated with the 4f -electron elevation look like 4f13nl6s2 or 4f136s2nl.

For these configurations, the spin-orbit interaction of the individual electrons is stronger than

the residual Coulomb interaction between two electrons. Therefore the jj coupling scheme

gives a more appropriate description of the resultant states [35]. Since a full shell has zero

orbital and spin angular momenta, 4f13 is equivalent to 4f in the consideration of angular

momentum coupling. For example, the 4f136s26p configuration, equivalent to 4f6s26p or

simply 4f6p, contains four jj coupling terms with (j1, j2) equal to (7
2 ,

3
2), (7

2 ,
1
2), (5

2 ,
3
2), and

(5
2 ,

1
2) respectively, and these four terms contain twelve levels in total.

Electric-dipole (E1) transitions in Yb follow the selection rule ∆l = ±1 if a single electron

jump is involved, where l is the orbital angular momentum of that electron [36]. Starting

from the ground level 4f146s2, the allowed jumps with the least energies are 6s → 6p and

4f → 5d. Note that the 4f → 5d jump does not involve the valence 6s electrons, and both

the initial and the final orbitals of the jumping electron are interior to the valence shell. A

transition associated with this type of electron jump is called an inner-shell transition. In

contrast, an outer-shell transition is associated with an electron jump in which either the
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initial orbital or the final orbital of the jumping electron is exterior to the valence shell.

Apparently, transitions with the 6s→ 6p jump are outer-shell transitions.

E1 transitions, either inner- or outer-shell, further follow the selection rule ∆J = 0,±1

and J = 0 = 0, where J is the total angular momentum of the atomic level [36]. Since the

Yb ground level has J = 0, allowed transitions originating from it will end up only in levels

with J = 1. The 4f146s6p configuration, as a result of the 6s → 6p jump, contains four

levels belonging to two LS terms: 3P0,1,2 and 1P1. The 4f135d6s2 configuration, as a result

of the 4f → 5d jump, contains twenty levels belonging to four jj terms: (7
2 ,

5
2)1,2,3,4,5,6,

(7
2 ,

3
2)2,3,4,5, (5

2 ,
5
2)0,1,2,3,4,5, and (5

2 ,
3
2)1,2,3,4. Among them, only five levels have J = 1,

4f146s6p︷ ︸︸ ︷
3P1,

1P1 and

4f135d6s2︷ ︸︸ ︷(
7

2
,
5

2

)
1
,

(
5

2
,
5

2

)
1
,

(
5

2
,
3

2

)
1
. (3.1)

These five E1 transitions are indicated by upward arrows in Figure 3.1.

3.2 Absorption Spectroscopy

One way to verify whether we have successfully isolated individual Yb atoms in solid Ne

is to perform absorption spectroscopy on the Yb/Ne samples. Optical absorption spectra

of Yb in solid Ar, Kr and Xe have been reported previously [37], where the embedded Yb

atoms exhibit broadened and shifted electronic transitions, similar to other group II atoms in

solids [38]. However, limited by the instrumental resolution, the previous researchers did not

further study the details of the Yb absorption bands. We have studied the absorption of Yb

in solid Ne with progressively finer resolutions using both spectrometers and lasers. Therefore

we are able to observe the dramatic difference in lineshape between inner- and outer-shell

transitions. Usually the probe light is weak so that one essentially probes transitions only

from the ground level. But with additional excitation, long-lived excited levels may be

populated from which the transitions can be studied as well.
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3.2.1 Results with Spectrometers

We first perform the traditional absorption spectroscopy using a broadband light source and

a spectrometer. The light is fiber coupled to a collimator and shined through the sample

from viewport A in Figure 2.6. Outside viewport B, the transmitted light is collected by a

second collimator and fiber coupled to the spectrometer. Without the sample, the spectrum

of the transmitted light is recorded as the reference. With the sample, any change in the

spectrum of the transmitted light signals the absorption by the sample.

Two light sources from Ocean Optics are used, DT-2000-MINI and DH2000-DUV. They

are both deuterium-tungsten lamps that cover wavelengths from 200 nm to 2500 nm, but

DH2000-DUV is about 50 times brighter. Two optical spectrometers are used, Ocean Optics

USB4000-UV-VIS and McPherson 225. The groove densities of their gratings are both

600 mm−1. However, the resolution is 1.5 nm for the Ocean Optics and 0.03 nm for the

McPherson due to the different entrance-slit size and the arm length. We usually pair the

DT-2000-MINI lamp with the Ocean Optics spectrometer and the DH2000-DUV lamp with

the McPherson spectrometer to get reasonable signal to noise ratio.

The Ocean Optics spectrometer module has a built-in camera to record spectra. It has a

fixed camera frame that covers wavelengths from 200 nm to 1100 nm. The communication

with the spectrometer is made via the software provided by Ocean Optics. For the McPherson

spectrometer, we replace the exit slit assembly by a CCD line camera (Mightex TCE-1304-

UW). Due to the 1.66 nm/mm dispersion at the exit, each camera frame covers only 40 nm.

Therefore we shift the central wavelength of the spectrometer to select the desired wavelength

windows. The central wavelength can be tuned from 200 nm to 600 nm. We have developed

LabVIEW programs to extract data from the CCD camera.

An overview of the Yb absorption in solid Ne is obtained using the Ocean Optics spec-

trometer with 1.5 nm resolution. In Figure 3.2, the red curve shows the absorption spectrum

with n2,Yb ∼ 1 × 1014 cm−1 [24], and the blue curve with n2,Yb ∼ 2 × 1015 cm−1. Five

absorption bands are observed and identified as Yb transitions from the ground level (Ta-
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Figure 3.2: The absorption spectra of Yb atoms in solid Ne taken by the Ocean Optics
spectrometer with 1.5 nm resolution. All absorption bands correspond to Yb transitions
from the ground level. Two curves are the absorption signals with two different Yb densities.

ble 3.1). Compared to transitions in vacuum, the centers of absorption bands in solid Ne

all get shifted to the high energy side by a few hundred to more than a thousand cm−1.

Band (a), identified as the relatively weak intercombination transition 6s2 1S0 − 6s6p 3P1,

is not observable in the low density spectrum. Band (b) is used to calibrate the Yb density

in the sample (Section 2.4). In the high density spectrum, the size of bands (b), (c), (d),

and (e) is background limited and does not reflect the transition strength relative to that of

band (a). The situation is worse for bands (d) and (e) than bands (a) and (b) because the

broadband light contains fewer photons near 4.0× 104 cm−1 than 2.5× 104 cm−1.

Table 3.1: The identification of the observed absorption bands of Yb atoms in solid Ne
shown in Figure 3.2. All transitions are from the ground level 4f146s2 1S0 to the levels
below. ν is the transition frequency in vacuum, ν∗a is the center of the absorption band in
solid Ne, ∆ν is the natural linewidth in vacuum, and ∆ν∗a is the width of the narrowest peak
in the absorption band shown in Figure 3.3. ν, ν∗a , ν∗a − ν, ∆ν, and ∆ν∗a are in cm−1. The
uncertainties are 40 cm−1 for ν∗a , and 10% for ∆ν∗a .

Band Level ν ν∗a ν∗a − ν ∆ν ∆ν∗a ∆ν∗a/∆ν
(a) 4f146s6p 3P1 17,992 18,510 +518 3.9× 10−5 270 6.9× 106

(b) 4f146s6p 1P1 25,068 25,760 +692 1.0× 10−3 120 1.2× 105

(c) 4f135d6s2 (7
2 ,

5
2)1 28,857 29,140 +283 3.6× 10−4 5 1.1× 104

(d) 4f135d6s2 (5
2 ,

5
2)1 37,415 37,730 +315 4.8× 10−4 6 1.0× 104

(e) 4f135d6s2 (5
2 ,

3
2)1 38,422 39,670 +1,248 30
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Note that the five absorption bands exactly correspond to the five transitions discussed

in Section 3.1. Bands (a) and (b) are outer-shell transitions with the 6s → 6p jump, while

bands (c), (d), and (e) are inner-shell transitions with the 4f → 5d jump. Under the Ocean

Optics spectrometer, the five bands do not seem very different as they all appear to be single

peaked. However, the widths of bands (d) and (e) are limited by the resolution (240 cm−1

at 4 × 104 cm−1). To study their detailed structure and find out their intrinsic linewidth,

we improve the resolution by using the McPherson spectrometer.

Figure 3.3 shows separately the lineshape of the five absorption bands with 0.03 nm

resolution. The difference between inner- and outer-shell transitions is readily seen. The

width of the narrowest peak in bands (a) and (b) remains a few hundred cm−1 while the

width of the narrowest peaks in bands (c), (d), and (e) ranges from a few to a few ten cm−1

(Table 3.1). With narrower linewidth, the lineshapes of bands (c), (d), and (e) reveal more

splitting than (a) and (b). I will explain the broadening and the splitting in the following

two sections. But before that I will show the result of laser spectroscopy on band (d) due to

its particularly narrow linewidth and relatively simple lineshape.

Figure 3.3: The absorption spectra of Yb atoms in solid Ne taken by the McPherson spec-
trometer with 0.03 nm resolution. All the panels use the same wavenumber scale and the
absorption strengths are separately normalized.
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3.2.2 Results with Lasers

In Figure 3.3, the width of the two narrow peaks on the high wavenumber side in band (d)

is about 5 cm−1, comparable to the resolution of the McPherson spectrometer (4.3 cm−1 at

3.8× 104 cm−1). Therefore to find out the intrinsic width of the peaks in band (d), a laser

with narrow linewidth is needed as the probe light for the absorption study.

The laser we use is a frequency-doubled optical parametric oscillator (OPO) from Con-

tinuum (Sunlite EX). It is pumped by a third harmonic pulsed Nd:YAG laser (Powerlite

DLS), and its signal output is doubled by a second-harmonic generator (Inrad AT-II). Each

pulse contains about 1 mJ energy which is attenuated by four orders of magnitude to avoid

heating the samples. The linewidth of the ultraviolet photons is about 1 GHz, and the wave-

length is scanned with an interval of 5 × 10−4 nm or about 2 GHz in frequency. Therefore

the resolution of this laser spectroscopy is about 2.5 GHz. The ultraviolet laser is then split

into a probe beam and a reference beam. The probe beam is shined through the sample and

its transmission is detected by a photodiode. The reference beam propagates outside the

cryostat and is detected by a second photodiode. As the wavelength is scanned, the power

ratio of the probe beam to the reference beam gives the transmission spectrum.

Figure 3.4: The intrinsic lineshape of absorption band (d) in Figures 3.2 and 3.3 probed by
the frequency-doubled OPO laser. The spectrum has a resolution of about 2.5 GHz. Both
peaks on the high wavenumber side have a width of 4 cm−1 or 120 GHz.
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Figure 3.4 shows the lineshape of the absorption band (d) with 2.5 GHz resolution.

Since the spectrum is no longer resolution limited, the width of the two peaks on the high

wavenumber side, 4 cm−1 or 120 GHz, represents the narrowest linewidth of Yb transitions

in solid Ne . Three peaks on the low wavenumber side have a larger width and are regularly

spaced by 14 cm−1. It is tempting to think that they are the phonon sidebands while the

two narrow peaks are the zero phonon lines. However, in the absorption mode, the phonon

sidebands should appear on the high wavenumber side of the zero phonon line(s).

3.3 Linewidth Broadening Mechanism

We have seen that the widths of the peaks in different Yb absorption bands in solid Ne vary

from a few cm−1 to a few hundred cm−1, which are broadened from their natural linewidths

by four to almost seven orders of magnitude. We would like to understand two things: (1)

whether the linewidth broadening is homogeneous or inhomogeneous; (2) what mechanism

causes such a broad linewidth and the variation among different transitions.

3.3.1 Homogeneous Broadening

The first question can be answered by doing a hole-burning experiment [39]. In a hole-

burning experiment, a strong light with a narrow linewidth compared to the observed atomic

linewidth resonantly pumps the atoms out of the equilibrium state. A weak light then probes

the lineshape of the atomic transition. If the broadening is inhomogeneous, then the pump

light will resonate with only a small class of atoms and thus burn a narrow hole on the

lineshape measured by the probe light. Whereas for homogeneous broadening, the lineshape

remains the same with, however, a reduced intensity.

We choose to study absorption band (b), the center of which is at 388 nm in solid Ne [24].

The 388 nm laser is obtained by frequency doubling the Ti:Al3O3 laser (Sirah Matisse TS)

using a LiB3O5 crystal and a cavity. The resultant linewidth is about 1 MHz, sufficiently
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narrow compared to the atomic linewidth in solid Ne (a few THz). The power of the Ti:Al3O3

laser at 776 nm is about 1 W when pumped by the 10 W Nd:YAG laser (Sirah Millennia).

The power of the 388 nm laser is about 5 mW and the beam width is expanded to 1 cm,

wider than the probe beam. In this experiment, we continue to use the weak broadband

lamp and the Ocean Optics spectrometer to probe the absorption lineshape.

In Figure 3.5, the red curve is the same spectrum with low Yb density as in Figure 3.2,

and the blue curve is the steady-state spectrum when the 388 nm laser is on. When the

sample is excited by the 388 nm laser, the absorption bands (b), (c), (d), and (e) almost

disappear, which implies that the Yb atoms are depleted from the ground level. In the

meantime, new absorption bands appear, among which the strongest absorption band (f)

is identified as the 6s6p 3P0 − 6p2 3P1 transition. This indicates that the 388 nm laser can

efficiently shelve the Yb population from 6s2 1S0 to the metastable 6s6p 3P0. This population

transfer is only possible if the narrow linewidth laser interacts with most of the atoms, which

shows that the broadening is homogeneous, at least for this transition.

Figure 3.5: The absorption spectra of Yb in solid Ne taken by the Ocean Optics spectrometer
with the 388 nm laser off (red solid) and on (blue dashed). Upon laser excitation, the
original absorption bands all disappear while a new band (f) appears which corresponds to
the 6s6p 3P0 − 6p2 3P1 transition. Inset: the evolution of the areas of absorption bands (c)
(red solid) and (f) (blue dashed) as the excitation laser is switched on and off. This figure
is reprinted with permission from a published work by C.-Y. Xu et al. in Phys. Rev. Lett.
107, 093001 (2011). Copyright c© 2011 by American Physical Society
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3.3.2 Intersystem Crossing

The entire population-transfer process can be seen from the inset of Figure 3.5, where the

evolution of the total area of bands (c) and (f) is plotted. After the 388 nm laser is turned

on, band (c) disappears and band (f) appears within a few seconds. After the 388 nm laser

is turned off, band (c) reappears and band (f) disappears in a few minutes. While the latter

dynamics originates from the slow decay of the metastable 6s6p 3P0 back to 6s2 1S0, the

former indicates an unusually fast transfer from 6s6p 1P1 to 6s6p 3P0.

In vacuum, 6s6p 1P1 only decays to 6s6p 3P0 via 5d6s 3D1. The decay rate of 5d6s 3D1 ←

6s6p 1P1 is about 10 s−1 and that of 6s2 1S0 ← 6s6p 1P1 is about 2 × 108 s−1. Therefore

the branching ratio of 5d6s 3D1 ← 6s6p 1P1 is about 5× 10−8. In the next step, 6s6p 3P0 ←

5d6s 3D1 is the dominant decay channel of 5d6s 3D1 with a branching ratio of about 0.6.

Therefore the total branching ratio of 6s6p 3P0 ← 6s6p 1P1 is about 3× 10−8.

Figure 3.6: Yb atoms in solid Ne are efficiently transferred from 6s2 1S0 to 6s6p 3P0 upon the
excitation to 6s6p 1P1. The 6s6p 3P0,1,2 ← 6s6p 1P1 decay is induced by the Stark mixing

between 5d6s 3D1,2 and 6s6p 1P1 due to the crystal field. In particular, the admixture of

5d6s 3D1 in 6s6p 1P1 gives an enhanced the branching ratio of 6s6p 3P0 ← 6s6p 1P1.

The cause for the enhanced intersystem crossing from the singlet to the triplet in solid Ne

is the Stark mixing between 5d6s 3D1,2 and 6s6p 1P1 due to the crystal field (Figure 3.6). In

particular, the admixture of 5d6s 3D1 in 6s6p 1P1 gives rise to the direct decay 6s6p 3P0 ←
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6s6p 1P1. The mixing coefficient between 5d6s 3D1 and 6s6p 1P1 is difficult to estimate

because we do not know their relative energies in solid Ne (see Appendix C for a calculation

using energies of free Yb). But suppose the mixing coefficient is 0.1, with which 6s6p 1P1 is

still thought to be reasonably pure. Since the decay rate of 6s6p 3P0 ← 5d6s 3D1 is about

2 × 106 s−1, the induced rate of 6s6p 3P0 ← 6s6p 1P1 is about 2 × 104 s−1. Therefore the

induced branching ratio of 6s6p 3P0 ← 6s6p 1P1 is about 10−4, enhanced by 3× 103.

The Stark mixing between 5d6s 3D1,2 and 6s6p 1P1 also causes 6s6p 3P1,2 to be populated.

Together with 6s6p 3P0, their spontaneous decays to 6s2 1S0 constitute most of the observed

green fluorescence when the sample is excited by the 388 nm laser (Figure 3.7). The laser in-

duced fluorescence spectroscopy is discussed in Section 3.5. The transfer 6s2 1S0 → 6s6p 3P0

and the evolution of the 6s2 1P1 and 6s2 3P1,2 populations are analyzed in Appendix D using

rate equations.

Figure 3.7: A picture of a Yb/Ne sample grown on the sapphire substrate when excited by
the 388 nm laser. The strong green fluorescence is attributed to the spontaneous decays of
6s6p 3P0,1,2 and those of other excited levels that happen to fall in this wavelength range.

3.3.3 Phonon Dephasing

So far, we have answered the first question, raised at the beginning of Section 3.3, that the

Yb transitions in solid Ne are homogeneously broadened. This suggests that the difference

in optical properties of Yb atoms due to the different trapping sites in solid Ne is negligible

compared with the homogeneous mechanisms. The most obvious cause for homogeneous
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broadening is the reduced lifetime in accordance with the uncertainty principle. The reduced

lifetime could be caused by some type of collisions or “pressure” in a solid matrix [40]. Since

the linewidth is broadened by several orders of magnitude, the lifetime has to be reduced by

the same amount. However, as will be seen in Chapter 4, the lifetimes of excited levels in

solid Ne remain within the same order of magnitude as the vacuum lifetimes. Therefore this

mechanism is not the dominant contribution to the observed linewidth broadening.

Another candidate for homogeneous broadening in solids is the thermal broadening due

to phonon dephasing. The physical picture of this mechanism is that the interaction between

the impurity and the phonons in a crystal randomly shifts the phase of the excited state of

the impurity, and therefore although the excited-state lifetime remains unchanged, a phase

decoherence of the excited state is induced which results in a linewidth broadening.

For an isolated impurity in a crystal, the theory [41] considers the following Hamiltonian

that describes the coupling between a two-level impurity and a phonon field

Himp+ph = |g〉〈g|H g
ph + |e〉〈e|H e

ph = H g
ph + |e〉〈e|(H e

ph −H g
ph), (3.2)

where |g〉 and |e〉 are the ground and excited states of the impurity, and H g
ph and H e

ph are

the phonon Hamiltonians when the impurity is in the ground and excited states. H e
ph−H g

ph

equals the difference of the potential energy surfaces of the impurity-lattice system Vg and

Ve when the impurity is in the ground and excited states. Ve−Vg can be expanded in terms

of a strain field, and α is the dimensionless coefficient of the quadratic term.

The optical absorption lineshape is given by

I(ω) ∝
∫ ∞
−∞

dteiωte−|t|/2τ 〈D(t)D(0)〉, (3.3)

where τ is the excited-state lifetime, 〈· · · 〉 stands for the average in the canonical ensemble,

and D(t) = eiH t/~De−iH t/~ is the time-dependent electric-dipole operator. The calcu-

lation of the ensemble average is quite lengthy and requires the analysis of a few types of
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Feynman diagrams. The result is that the lineshape is a Lorentzian, and the linewidth at

low temperatures, where n(ω) = (e~ω/kBT − 1)−1 � 1, is

∆ω∗ =
1

4π2

∫ ∞
0

dω
n(ω)(n(ω) + 1)D2(ω)

(1− αK(ω))2 + α2D2(ω)
, (3.4)

where D(ω) is the phonon density of states and K(ω) = (2/π)
∫∞

0 dνD(ν)ν/(ω2 − ν2).

In a solid Ne matrix, only acoustic phonons are present. Their density of states under

the Debye approximation is n(ω) = (3π/2)(ω/ωD)3 for ω < ωD, where ~ωD = kBTD and TD

is the Debye temperature. Therefore the linewidth becomes

∆ω∗

ωD
=

9

4

(
α

1 + α

)2( T

TD

)7 ∫ TD/T

0
dx

x6ex

(ex − 1)2
, (3.5)

when T � TD, which displays a T 7 dependence [42]. The strong temperature dependence

originates from the fact that acoustic phonons are very soft thermal excitations of the lattice

vibration and their density of states increases rapidly as the lattice gets hotter.

Our experiments fall in the low temperature regime because the mean Debye temperature

of solid Ne is 63 K [22]. We can change the temperature of the Yb/Ne samples between 3 K

and 5 K. If the phonon dephasing theory is the dominant mechanism, we should observe a

factor of 36 change in linewidth. However, we find that the lineshape of bands (b) and (d)

hardly changes even using the McPherson spectrometers. Therefore the phonon dephasing

mechanism is not the dominant cause for the observed homogeneous broadening either.

3.3.4 Reflection Principle

The failure of using the phonon dephasing theory to explain the broadening of Yb transitions

in solid Ne lies in the fact that the theory only applies to the broadening of the zero-phonon

line. For matrix isolated atoms, the zero-phonon line is weak or absent due to the low

Franck-Condon factor for the n = 0 ↔ 0 transition [4], where n is the quantum number

of the phonon state. What we have observed is, instead, transitions of the impurity atom
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with simultaneous excitation of local phonons due to the different potential energy surfaces

of the impurity-lattice system when the impurity is in the ground and exited states. For

example, the ground state of the group I and II atoms has a spherical symmetry and interacts

isotropically with the matrix. But in the excited state, the electron cloud is usually stretched,

which leads to an anisotropic interaction. This idea was first realized by Lax [5], and when

applied to molecules, it helps understand the lineshape of photodissociation, where it is

known as the reflection principle [43].

Figure 3.8: A sketch of the reflection principle that can explain the broad linewidth of Yb
transitions in solid Ne. The interaction between the impurity and the lattice is described by
two potential energy surfaces when the impurity is in the ground and excited states. When
the impurity makes a vertical transition, the spread of the ground-state wave-function is
reflected by the slope of the excited-state potential curve into a spread in the energy space.

Let Vg(Q) and Ve(Q) be the potential energy surfaces for the impurity-lattice system when

the impurity is in the ground and excited states, where Q is the configuration coordinate

that collectively describes the the lattice vibration (Figure 3.8). To simplify the problem, let

us assume that the impurity makes a transition to a high vibrational level of the final state.

Then the process can be treated semiclassically, i.e., the initial state is treated quantum

mechanically and the final state is treated classical mechanically [5]. For absorption, only

the lowest vibrational level of the ground state is populated since T � TD. The impurity

transition is vertical because the lattice moves much slower than the electron. The electron

ends up in a segment on the excited-state potential surface rather than on specific vibrational
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levels. Therefore the absorption lineshape can be calculated from the ground-state wave-

function of the electron, which has a linewidth

∆ω∗ =
1

~
dVe

dQ

∣∣∣∣
Q0,g

∆Qg, (3.6)

where ∆Qg is the width of the ground-state wave-function and Q0,g is the equilibrium

position in the ground state.

This mechanism qualitatively agrees our observations in a few ways. First, it is homo-

geneous since the transition of every single atom is broadened. Second, it is independent of

temperature since it originates from the zero-point spread of the ground-state wave-function

as a quantum mechanical effect. Third, it explains why inner-shell transitions are narrower

than outer-shell transitions. For an inner-shell transition, the two potential energy surfaces

are more horizontally aligned because the valence electrons which are responsible for cou-

pling with the lattice do not directly participate in the transition. Therefore the impurity

transition can land in a segment on the excited-state potential energy surface where the

slope is relatively gentle, which leads to a smaller spread in energy.

Quantitatively, we can estimate the linewidth using the pair potential between Yb and

Ne atoms to approximate the potential energy surfaces between Yb and the Ne lattice. These

pair potentials have been calculated [44] in terms of the Morse function

v(Q) = v0

(
1− e−(Q−Q0)/w

)2
, (3.7)

where v0 is the well depth, w is the well width, and Q0 is the equilibrium position. Then the

potential energy surfaces are roughly Vg,e(Q) = Nvg,e(Q), where N = 12 is the number of

nearest Ne atoms of the Yb impurity. Let us look at the linewidth of the 6s2 1S0− 6s6p 1P1

transition as an example. For the ground state, v0,g = 14.7 cm−1, wg = 0.909 Å, r0,g =

5.23 Å, and ∆Qg ∼ wg. For the excited state, v0,e = 43.9 cm−1, we = 0.909 Å, and

r0,e = 4.67 Å. In the end, we get ∆ω∗ = 262 cm−1 which is order of magnitude correct.
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3.3.5 Optical Bloch Equations

From the previous discussion, we know that the linewidth broadening is homogeneous and is

independent of the lifetime of the excited state. Therefore in order to correctly describe the

atom-photon interaction, we need to modify the optical Bloch equations accordingly. For a

two-level system in a free atom, these equations are, see Equation (7.67) in Reference [39],



du

dt
= (ω − ω0)v − Γ

2
u

dv

dt
= −(ω − ω0)u+ ωRw −

Γ

2
v

dw

dt
= −ωRv − Γ(w − 1)

, (3.8)

where u, v, and w are the coherences and the population difference between the ground and

excited states, ω is the angular frequency of the probe light, ω0 is the resonance angular

frequency, Γ is the spontaneous emission rate of the excited state, and ωR is the Rabi

frequency associated with the probe light. To incorporate additional broadening that does

not reduce the excited state lifetime, we simply add decoherence terms only to the u- and

v-equations 

du∗

dt
= (ω − ω0)v∗ − Γ

2
u∗ − Γd

2
u∗

dv∗

dt
= −(ω − ω0)u∗ + ωRw

∗ − Γ

2
v∗ − Γd

2
v∗

dw∗

dt
= −ωRv

∗ − Γ(w∗ − 1)

, (3.9)

where Γd is the decoherence rate. The steady-state solution to the modified equations is

w∗ =
(ω − ω0)2 + (Γd/Γ + 1)2Γ2/4

(ω − ω0)2 + (Γd/Γ + 1)2Γ2/4 + (Γd/Γ + 1)ω2
R/2

, (3.10)

which, using the same derivation that leads to Equation (7.75) – (7.77) in Reference [39],

leads to the modified absorption cross-section

σ∗(ω) = σ0
(Γd/Γ + 1)Γ2/4

(ω − ω0)2 + (Γd/Γ + 1)2Γ2/4
. (3.11)
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As we can see, the linewidth scales as ∆ω∗ = W∆ω, where W = Γd/Γ + 1. At the same

time, σ∗(ω0) = σ(ω0)/W so that the integral
∫
σ(∗)(ω)dω = πσ0Γ/2 remains the same. As

a result, the saturation intensity scales as I∗sat = WIsat since I
(∗)
sat = ~ω0Γ/2σ(∗)(ω0).

3.4 Level Splitting Mechanism

Besides the significantly broadened linewidth of Yb transitions in solid Ne, another feature

seen from Figure 3.3 is that one absorption band which corresponds to a single allowed

transition in vacuum splits into multiple peaks. In this section, we utilize the group theory

to analyze the splitting of atomic transitions in solids [45]. Although this approach cannot

predict the size of the splitting, it accurately determines the number of splitting based on

the symmetry of the trapping site.

3.4.1 Group Theoretical Approach

An atom in vacuum enjoys the symmetry of the full 3D rotation group SO(3). The energy

levels are thus described by its irreducible representations D(j), where j ∈ N is the angular

momentum of the representation. The dimension of the representation D(j) is 2j + 1 which

determines the degeneracy of the described level. When an atom is located in a crystal,

the crystal field of the trapping site destroys the isotropy of free space. Thus the symmetry

group is reduced to some finite group of rotation, which allows the originally irreducible

representations D(j) to be reduced with respect to the finite group. This reduction in

the dimensionality of the irreducible representations causes the degeneracy associated with

complete rotational symmetry to be lifted.

Since the five absorption bands all correspond to J = 0→ 1 transitions, let us study how

J = 0, 1 levels split. Given a point group that describes the symmetry of the trapping site, we

work out the characters of the conjugate classes in both its own irreducible representations

and D(j). As an example, Table 3.2 shows the character table of the octahedral group
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O comprised of 24 proper rotations, where A1, A2, E , T1, and T2 are its five irreducible

representations. The decomposition of D(j) is determined by the decomposition formula

R =
⊕∑
i

niRi, ni =
1

N

∑
k

NkχRi
(Ck)χR(Ck), (3.12)

where R (Ri) stands for the (ir)reducible representation, N is the number of group elements,

Nk is the number of group elements in the class Ck, and χR(C ) is the character of the class

C in the representation R. The result for D(j) (j = 0, 1, 2, 3) is also given in Table 3.2.

Table 3.2: The character table of the octahedral group O comprised of only proper rotations.

O E 8C3 3C2 6C2 6C4 decomposition
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 -1 1
T2 3 0 -1 1 -1

D(0) 1 1 1 1 1 A1

D(1) 3 0 -1 -1 1 T1

D(2) 5 -1 1 1 -1 E ⊕T2

D(3) 7 1 -1 -1 -1 A2 ⊕T1 ⊕T2

We see that under the octahedral symmetry neither J = 0 nor J = 1 levels splits.

Therefore the Yb trapping sites in solid Ne must have a symmetry lower than octahedral to

account for the splitting of J = 0→ 1 transitions. For example, if the octahedron cage of Ne

atoms housing the Yb atom is elongated along one of the three-fold axes, the symmetry is

further reduced to the dihedral group D3. Then we need to further decompose the irreducible

representations of O by the irreducible representations of D3. This can be done again using

Equation (3.12) once we have the character table of D3. We skip the calculation here and

only show the final result: D(0) O−→ A1
D3−−→ A1 and D(1) O−→ T1

D3−−→ E ⊕A2. This means

J = 0 still does not split but J = 1 splits into two sublevels under the D3 symmetry, which

explains the roughly two-fold splitting of bands (a) and (b) in Figure 3.3.
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3.4.2 Splitting of 4f → 5d Transitions

The above treatment for J = 0 → 1 transitions does not explain the splitting of bands (c),

(d), and (e) because J = 0 never splits and J = 1 at most has a three-fold splitting. To

understand these three bands, note that the configuration change 4f146s2 → 4f135d6s2 they

all correspond to is, in essence, a 4f → 5d electron jump. Therefore it is heuristic to study

the much simpler configuration change 4f6s2 → 5d6s2 with the same jump, which is found

in La although the order of the two states is reversed. The ground state of 4f6s2 → 5d6s2

is a fine structure doublet 2F7/2 and 2F5/2, and the excited state is also a fine structure

doublet 2D5/2 and 2D3/2 (Figure 3.9). According the selection rule for J , only three E1

transitions are allowed. Therefore we have established a one-to-one correspondence, Yb:

4f146s2 1S0 → 4f135d6s2 (j1, j2)1 ⇐⇒ “La”: 4f6s2 2Fj1 → 5d6s2 2Dj2 . Now the angular

momenta the crystal field acts on are j1 and j2, which are allowed to have more than three-

fold splittings given some symmetry.

Figure 3.9: The energy levels of the configuration change 4f6s2 2F → 5d6s2 2D. The only
three allowed electric-dipole transitions have a one-to-one correspondence with the three
J = 0→ 1 transitions in the Yb configuration change 4f146s2 → 4f135d6s2.

Because j1 and j2 are half integers 3
2 , 5

2 , and 7
2 , the 2π rotation (Ω) is no longer an

identity operation. Therefore the size of the original rotation group needs to be doubled to

accommodate new group elements which are just all the original group elements multiplied

by Ω. Such an augmented group is called the crystal double group which inevitably has more
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conjugate classes and thus more irreducible representations [46]. The decomposition of D(j)

with half integer j contains only those newly added irreducible representations.

We use the D3 group as an example since we already know that the octahedral symmetry

is too good to describe the splitting of bands (a) and (b). The character table of the crystal

double group of D3 is given in Table 3.3, where R1, R2, and R3 are the original irreducible

representation of D3, and R4, R5, and R6 are the three additional irreducible representations

due to the increased number of conjugate classes. Again using Equation (3.12), we can readily

decompose D(j) with half integer j. The result is that 5d6s2 2D3/2 splits into three sublevels,

5d6s2 2D5/2 and 4f6s2 2F5/2 into four, and 4f6s2 2F5/2 into five. Although it takes some

more work to figure out the exact assignment, at least we now have enough degrees of freedom

to explain the splitting of bands (c), (d), and (e).

Table 3.3: The character table of the crystal double group of the dihedral group D3.

D3 E 2C3 3C2 Ω 2ΩC3 3ΩC2 decomposition
R1 (A1) 1 1 1 1 1 1
R2 (A2) 1 1 -1 1 1 -1
R3 (E ) 2 -1 0 2 -1 0

R4 1 -1 1 -1 1 -1
R5 1 -1 -1 -1 1 1
R6 2 1 0 -2 -1 0

D(1/2) 2 1 0 -2 -1 0 R6

D(3/2) 4 -1 0 -4 1 0 R4 ⊕R5 ⊕R6

D(5/2) 6 0 0 -6 0 0 R4 ⊕R5 ⊕ 2R6

D(7/2) 8 1 0 -8 -1 0 R4 ⊕R5 ⊕ 3R6

3.5 Emission Spectroscopy

We have seen in Section 3.3 that the 388 nm laser, resonant with the 6s2 1S0 − 6s6p 1P1

transition of Yb atoms in solid Ne, is capable of populating 6s6p 3P0,1,2 due to an enhanced

intersystem crossing 6s6p 3P0,1,2 ← 6s6p 1P1. As a result, the 388 nm laser induces a strong

green fluorescence corresponding to the spontaneous decays of 6s6p 3P0,1,2.

When we use a spectrometer to analyze the steady-state fluorescence from the sample, we
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observe a lot more emission bands in the visible-ultraviolet range (Figure 3.10). The reason

is that when the 388 nm laser is steadily on, Yb atoms are mostly on the metastable 6s6p 3P0,

from which they can absorb a second photon and get further excited before decaying back

to 6s2 1S0. The strongest absorption band from 6s6p 3P0 is centered at 26,740 cm−1 (band

(f) in Figure 3.5). Due to the broad absorption linewidth, the 388 nm (25,770 cm−1) laser

still has a small cross-section for exciting this transition. Once Yb atoms are further excited,

more decay channels are turned on, which results in more emission bands. The identification

of the emission bands in Figure 3.10 is summarized in Table 3.4, which is discussed below in

three wavelength regions.

Figure 3.10: The steady-state emission spectrum of Yb atoms in solid Ne induced by the
388 nm laser taken by the Ocean Optics spectrometer with 1.5 nm resolution.

Region I (1.7×104 ∼ 2.1×104 cm−1): The emission bands in this region are responsible

for the strong green glow shown in Figure 3.7. The 6s2 1S0 ← 6s6p 3P0,1,2 decays fall in

this region, and their spacings roughly match those in vacuum. In solid Ne, metastable

6s6p 3P0 remains very long-lived and the lifetime of 6s6p 3P1 is comparable to that in

vacuum, which is the main result of Chapter 4. Curiously, the lifetime of metastable 6s6p 3P2

is quenched to only a few milliseconds, for which we do not have a good explanation. The

strong band at 18,900 cm−1 corresponds to the 6s6p 1P1 ← 6p2 3P1 decay, which follows the

6s6p 3P0 → 6p2 3P1 excitation. The band at 20,710 cm−1 is unidentified.
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Table 3.4: The identification of the observed emission bands of Yb atoms in solid Ne shown
in Figure 3.10. Five emission bands labeled by letters are the corresponding emission of
the five absorption bands in Figure 3.2 and Table 3.1. Forbidden transitions in vacuum are
labeled by †. ν is the transition frequency in vacuum and ν∗e is the center of emission bands
in solid Ne. ν∗a , the center of absorption bands in solid Ne, is also listed for comparison. All
numbers are in cm−1. ν∗e and ν∗a have an uncertainty of 40 cm−1.

Transition ν ν∗e ν∗e − ν ν∗a ν∗a − ν∗e
6s2 1S0 ← 6s6p 3P0 † 17,288 17,730 +442

6s2 1S0 ← 6s6p 3P1 (a) 17,992 18,320 +328 18,510 +190

6s6p 1P1 ← 6p2 3P1 18,737 18,900 +163

6s2 1S0 ← 6s6p 3P2 † 19,710 20,080 +370
Unidentified 20,710

6s2 1S0 ← 4f135d16s2 (7
2 ,

3
2)2 † 23,189 23,070 −119

6s2 1S0 ← 5d6s 3D1 † 24,489 24,490 ∼ 0

6s2 1S0 ← 6s6p 1P1 (b) 25,068 25,320 +252 25,760 +440

6s2 1S0 ← 5d6s 1D2 † 27,678 27,860 +182

6s2 1S0 ← 4f135d16s2 (7
2 ,

5
2)1 (c) 28,857 29,030 +173 29,140 +110

6s2 1S0 ← 4f136s26p (7
2 ,

3
2)2 † 35,197 35,590 +393

6s2 1S0 ← 4f135d16s2 (5
2 ,

5
2)1 (d) 37,415 37,730 +315 37,730 ∼ 0

6s2 1S0 ← 4f135d16s2 (5
2 ,

3
2)1 (e) 38,422 39,610 +1, 188 39,670 +60

Region II (2.2× 104 ∼ 2.6× 104 cm−1): Apart from the 6s2 1S0 ← 6s6p 1P1 decay at

25,320 cm−1, the other two bands in this region are identified as two forbidden transitions of

Yb in vacuum. The band at 23,070 cm−1 corresponds to the 6s2 1S0 ← 4f135d6s2 (7
2 ,

3
2)2 de-

cay, which is forbidden by the selection rule J = 0 = 2. Note that the level 4f135d6s2 (7
2 ,

3
2)2

has the same configuration as the excited levels of absorption bands (c), (d), and (e). The

band at 24,490 cm−1 corresponds to the 6s2 1S0 ← 6s5d 3D1 decay, which is forbidden by

the parity selection rule.

Region III (2.7 × 104 ∼ 4.0 × 104 cm−1): The energy of the emission bands in this

region is higher than that of the 388 nm photon because Yb atoms on 6s6p 3P0 absorb a

second 388 nm photon and get further excited before decaying to 6s2 1S0. The emission

bands are tentatively assigned to the decays of various excited levels to 6s2 1S0 according to

the proximity of their transition wavenumbers to those in vacuum.
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CHAPTER 4

LIFETIMES OF YB IN SOLID NE

This chapter is adapted with permission from a published work by C.-Y. Xu et al. in Phys.

Rev. Lett. 113, 033003 (2014). Copyright c© 2014 by American Physical Society

4.1 Hyperfine Quenching

The conservation of angular momentum strictly forbids single-photon transitions between

two atomic states if both electronic angular momenta are equal to zero, i.e. J = 0 = 0.

This restriction can be circumvented by state mixing due to the hyperfine interaction [47].

The consequent increase in the transition rate is referred to as hyperfine quenching (HFQ),

a feeble mechanism that typically plays a significant role in the radiative decay of only the

lowest lying 3P0,2 levels of divalent atoms.

The earliest studies of the HFQ effect focused on the spectra originating from nebulae [48].

More recently, the isotopic dependence of these astronomical spectra have been used to infer

HFQ rates [49] and, conversely, isotope ratios that result from stellar nucleosynthesis [50].

In the laboratory, the 1s2p 3P0,2 levels in He-like ions were the first to be measured and

are the most thoroughly studied [51]. The HFQ rates of a handful of many-electron ions

have also been measured [51, 52, 53, 54]. However, the rate has never been measured in any

neutral atoms due to difficulties involved in populating the relevant levels and subsequently

observing their slow decay.

In neutral atoms, efforts have been made in modern ab initio calculations of the HFQ

rate [55, 56], motivated by the promising application of neutral divalent atoms to optical

clocks [57], quantum computing [58], and quantum simulation of many-body systems [59].

In the case of optical clocks, the HFQ rate determines the natural linewidth and the Rabi

frequency of the “clock transition” ns2 1S0− nsnp 3P0 in fermionic isotopes. The HFQ rate

calculations require accurate knowledge of the atomic structure of the many-electron atoms.
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For 6s2 1S0 (F = 1/2)− 6s6p 3P0 (F = 1/2) in 171Yb with a nuclear spin I = 1/2, the HFQ

rate (ΓHFQ) involves the matrix element of the electric-dipole (E1) operator (D) between

intermediate levels (λ) and the ground level 6s2 1S0, as well as the matrix element of the

hyperfine interaction (HHFI) between these levels (λ) and 6s6p 3P0,

ΓHFQ(1S0 − 3P0) ∝

∣∣∣∣∣∑
λ

〈
1S0||D ||λ

〉〈
λ||HHFI||3P0

〉
E(λ)− E(3P0)

∣∣∣∣∣
2

, (4.1)

where E(λ) are energies of the levels relative to the ground level [55]. Among the intermediate

levels, the HFQ of 6s6p 3P0 is predominantly caused by the admixture of the lowest lying

6s6p 3P1 and 6s6p 1P1 [55], from which the transitions to the ground level are both E1

allowed. Our measurement, therefore, serves as a sensitive benchmark for these calculations.

Figure 4.1: Low-lying atomic levels and transitions of Yb in solid Ne. 3P0 can be efficiently
populated by virtue of an enhanced intersystem crossing 3D1 ← 1P1. The radiative decay of
3P0 is observed in both 171Yb and 172Yb samples.

We employ a novel technique of probing atoms embedded in solid Ne to extract the

HFQ rate ΓHFQ(1S0 − 3P0) in free 171Yb. Interrogating atoms trapped in a solid offers

both high atomic density and long observation time. In addition, while matrix isolated

Yb atoms qualitatively resemble free atoms, they exhibit an enhanced intersystem crossing

5d6s 3D1 ← 6s6p 1P1, enabling efficient population of 6s6p 3P0 by pumping the strong

6s2 1S0 − 6s6p 1P1 transition and the subsequent spontaneous decay (Figure 4.1) [24]. We
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choose solid Ne as the matrix because it is less polarizable than heavier noble-gas solids

and more technically accessible than solid He. While He only solidifies under at least 25 bar

pressure, Ne readily forms a solid with face-centered-cubic structure at 24.5 K and 1 bar [22].

The main challenge of performing this measurement is to properly account for various

medium effects. First, the medium may open additional radiative or nonradiative decay

channels on an excited atom. Second, the medium may alter the HFQ rate of a free atom

by modifying the atomic wave functions and shifting the energies in Equation (4.1). Third,

Fermi’s golden rule dictates that the spontaneous emission rate of a transition depends

cubically on the transition frequency that may be shifted in medium. Finally, the sponta-

neous emission rate also depends on the environment of the emitter. Such a phenomenon,

known as the Purcell effect, is one of the hallmarks of quantum electrodynamics (QED). In

cavity QED, the decay rate is modified by the geometry of the surrounding vacuum environ-

ment [60, 61, 62, 63]. Within a medium, however, the decay rate depends on the index of

refraction because it modifies both the photon dispersion relation and the energy fluctuation

of the QED vacuum. Although the index-of-refraction effect has been known for some time,

there is still considerable tension in its understanding [64, 65].

Figure 4.2: The time-dependent fluorescence intensity of 171Yb 3P0 (red solid circles) and
172Yb 3P0 (blue open circles) in solid Ne near the center of the emission peak. The influence
of the HFQ effect is evident.
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We address these effects as follows. First, we measure the 6s6p 3P0 decay rate for iso-

topically pure 171Yb and 172Yb (I = 0) in solid Ne (Figure 4.2). The difference between

these two rates separates the HFQ contribution from any medium quenching mechanisms

that are independent of isotopes. Second, the Yb transition frequencies in solid Ne are used

to calculate the energy and frequency dependent corrections. Third, we measure the decay

rate of Yb 6s6p 3P1 in solid Ne and compare it with the experimental value in vacuum [66] to

provide a direct calibration of the index-of-refraction effect. After making these corrections,

we then obtain the HFQ rate of a free atom.

4.2 Lifetime of 6s6p 3P0 in Solid Ne

The samples are prepared with a similar setup we used previously [24]. Before the deposition

on the liquid-He cooled sapphire substrate, Ne gas (99.999%) flows through a noble gas

purifier (LDetek LDP1000) and a 77 K charcoal trap in order to minimize the growth defects

and increase the sample transparency. We codeposit Yb using an atomic beam generated by

an effusive oven. To avoid the formation of Yb clusters, we keep the Yb-to-Ne ratio below

5 ppm and the temperature below 5 K to suppress the mobility of the atoms. Samples with

isotopically pure 171Yb (95%, Oak Ridge batch 196043) and 172Yb (97%, Oak Ridge batch

124501) are separately made. While the enriched Yb is available for several even isotopes,

172Yb contains the least concentration of odd isotopes.

We use a 385 nm light-emitting diode (LED) to excite the 1S0 − 1P1 transition [44] and

subsequently populate 3P0. The fluorescence is detected by a 1.5 nm resolution optical

spectrometer (Ocean Optics USB4000-UV-VIS). Figure 4.3(a) shows the emission spectrum

of 171Yb 3P0 (solid circles) and 172Yb 3P0 (open circles) in solid Ne after the LED is switched

off. We record the fluorescence decay at select wavelengths for 100 s for 171Yb and 300 s

for 172Yb. The decay near the center of the emission peak (565 nm) is shown in Figure 4.2.

At each wavelength, the decay rate of each isotope is obtained by fitting the data to an

exponential function and is plotted in Figure 4.3(b). The uncertainty about the size of the
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Figure 4.3: (a) The 1S0 ← 3P0 emission spectrum of 171Yb (red solid circles) and 172Yb
(blue open circles) in solid Ne after the 385 nm LED is switched off. The peak is shifted
from the vacuum position at 578.4 nm. The spectra are separately normalized so that the
peaks appear to have similar height. (b) The decay rate of 171Yb 3P0 (red solid circles)
and 172Yb 3P0 (blue open circles), and the difference of the decay rates between the two
isotopes (purple solid triangles) at select wavelengths. The error bars are about the size of
the markers.

markers is determined from the fitting error and the sample variance based on three 171Yb

and two 172Yb samples with different Yb densities and optical transparencies. The strong

wavelength dependence of the decay rates is in part due to the frequency cube dependence.

The remainder is likely caused by the interaction with phonons of different energies. The

sum of multiple exponential functions, which describes multiple types of trapping sites in

solid Ne, gives a better fit at some wavelengths, but the weighted average of the multiple

rates is not significantly different from the rate of the single exponential fit.

The decay rate of 172Yb 3P0 near 565 nm is approximately 2 × 10−2 s−1. Since its

single-photon decay in vacuum is strictly forbidden, this rate reflects the overall medium

quenching of an excited atom. One possible quenching mechanism may be that the atomic

wave functions are perturbed by the crystal field in solid Ne. To model this perturbation

(Appendix C), we assume that this field is randomly oriented and has a constant strength.

Eleven low-lying levels are included, between which the reduced matrix elements of the
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electric-dipole operator have been calculated [67]. We sum overMJ states and the orientation

of the field, leading to a Stark-like coupling between levels. In order to account for the

observed decay rate, it requires a 27 MV/m crystal field so that the perturbed 3P0 wave

function has an admixture of 3P1 with a mixing coefficient of 8.2×10−5. Such a crystal field

strength is not unexpected in solid Ne [22].

For the 171Yb 3P0 decay, since the nuclear spins are unpolarized and the crystal field

is randomly oriented, the effects of the HFQ and the medium quenching add incoherently.

We plot the difference of the decay rates between the two isotopes in Figure 4.3(b) (solid

triangles). As expected, this differential rate is mostly independent of the wavelength and

represents the HFQ contribution. We take the average of the rates weighted by the emission

intensity and find the HFQ rate of 171Yb 3P0 in solid Ne to be (6.72±0.28)×10−2 s−1. The

uncertainty is conservatively chosen to be half of the full range.

4.3 Medium Effects

We first examine the medium’s influence on the HFQ mechanism described in Equation (4.1).

From the crystal field strength estimation, we are assured that the atomic wave functions are

essentially intact. However, the medium alters the energy differences in the denominators.

The HFQ of 3P0 is predominantly caused by the admixture of the lowest lying 3P1 and 1P1 [55].

In solid Ne, we take E(3P0) = (565 nm)−1, E(3P1) = (546 nm)−1, and E(1P1) = (396 nm)−1

in the emission mode [24, 44]. E(3P1)−E(3P0) in solid Ne is equal to 616 cm−1 and is changed

from its vacuum value (704 cm−1) by a factor of 0.875. Therefore, the HFQ rate is enhanced

by a factor of 1.306 if the 3P1 term dominates the sum. Similarly, E(1P1)−E(3P0) is changed

by 0.971, and the rate enhanced by 1.061. Assuming a uniform probability distribution of

the relative contribution from 3P1 and 1P1, we take the midpoint as the mean and 1/
√

12 of

the full range as the uncertainty [68] and obtain an enhancement factor of 1.183± 0.071.
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We then consider the medium’s influence on the spontaneous emission rate of a transition,

Γm

Γv
=

(
ωm

ωv

)3

G(n), (4.2)

where ωm (ωv) is the transition frequency in medium (vacuum), and the scale factor G is a

function of the index of refraction n. To extract ΓHFQ,v(1S0− 3P0), we use ωNe(1S0− 3P0) =

(565 ± 1 nm)−1 and ωv(1S0 − 3P0) = (578.4 nm)−1 to calculate the frequency dependent

correction. The uncertainty is due to the spectrometer calibration and the sample variance.

We determine GNe by measuring the 3P1 decay for the following reasons. The HFQ

transition 1S0 (F = 1/2) − 3P0 (F = 1/2) and the intercombination transition 1S0 − 3P1

are both of E1 type. Their transition wavelengths are sufficiently close that the wavelength

dependence of the index of refraction is insignificant. The 3P1 decay rate in vacuum is

precisely known Γv(1S0 − 3P1) = (1.162± 0.008)× 106 s−1 [66]. Compared to this rate, the

medium quenching rate (∼ 2× 10−2 s−1) is negligible, which allows us to use the measured

total decay rate for ΓNe(1S0 − 3P1).

4.4 Lifetime of 6s6p 3P1 in Solid Ne

For the 3P1 lifetime measurement in solid Ne, samples of natural Yb are used. We excite

the 1S0 − 3P1 transition by a green diode pumped solid state laser (Opto Engine MGL-III-

543). The fluorescence light is coupled into a spectrometer (McPherson 225) and detected

by a photomultiplier tube counting module (Sens-Tech P10PC-2) mounted at the exit of the

spectrometer. A dead time correction is applied for the counting rate (Appendix E). Fig-

ure 4.4(a) shows the steady-state emission spectrum of 3P1 in solid Ne with 1 nm resolution.

We chop the laser at 50 kHz with a 50% duty cycle using an acousto-optic modulator

and record the decay at select wavelengths with 50 ns resolution. The decay rate at each

wavelength is plotted in Figure 4.4(b). The average of the rates weighted by the emission

intensity is ΓNe(1S0 − 3P1) = (1.464± 0.040)× 106 s−1, where the uncertainty is half of the
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Figure 4.4: (a) The 1S0 ← 3P1 emission spectrum of Yb in solid Ne induced by the 543 nm
laser. The peak is shifted from the vacuum position at 555.8 nm. (b) The decay rate of 3P1
at select wavelengths in solid Ne (green circles). The error bars are about the size of the
markers. The decay rate in vacuum, 1.162× 106 s−1, is off the scale. The black square with
an error bar indicates the predicted 3P1 decay rate in solid Ne using the RC model and the
frequency cube dependence.

full range. From Equation (4.2) for the 3P1 decay with ωNe(1S0− 3P1) = (546±1 nm)−1 and

ωv(1S0 − 3P1) = (555.8 nm)−1, we obtain the transition-independent GNe = 1.194 ± 0.036.

Again using Equation (4.2) for the 3P0 decay, we arrive at ΓHFQ,v(1S0−3P0) = (4.42±0.35)×

10−2 s−1 for free 171Yb. All the corrections we have made are summarized in Table 4.1.

We compare this result to two available calculations: 6.2 × 10−2 s−1 (no uncertainty

provided) [69] and 4.35 × 10−2 s−1 (a few percent uncertainty) [55]. Authors of Refer-

ence [69] have used experimentally measured hyperfine parameters in their calculation and

have included only two intermediate levels in Equation (4.1). Authors of Reference [55] have

computed the sum with multiple intermediate levels and have independently calculated the

hyperfine constants with better than 1% accuracy as a verification of the quality of their

technique. Our measurement is in good agreement with Reference [55].

We are also able to compare our experimentally determined GNe to theoretical predic-

tions. One theory supported by recent experiments for E1 transitions [70, 71] is the real
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Table 4.1: A summary of corrections due to medium effects for the extraction of the 3P0
HFQ rate of free 171Yb based on the measurements in solid Ne.

Correction Scale factor Uncertainty
Energy difference, Equation (4.1) 0.845 6.0%
Medium quenching 0.771 4.2%
Index-of-refraction effect, Equation (4.2) 0.838 3.0%
Frequency cube, Equation (4.2) 0.932 0.5%
Total 0.508 7.9%

cavity (RC) model [72]. It treats the emitter as residing in an empty spherical cavity carved

out of a lossless, homogeneous, and isotropic medium with permittivity ε = n2ε0. The

macroscopic field in the dielectric is canonically quantized. The model predicts the following

scaling with n,

GRC(n) = n3
[

1

n

(
Eloc

Emac

)
RC

]2

. (4.3)

The factor n3 comes from the in-medium photon dispersion relation. The macroscopic field

operator Êmac is renormalized by 1/n due to the in-medium energy density εÊ2
mac/2. The

ratio of the local field inside the cavity Eloc to the macroscopic field far outside the cavity

Emac is (Eloc/Emac)RC = 3ε/(2ε+ ε0) using the boundary conditions on the sphere.

Given the growth conditions of our solid Ne samples and both the wavelength and the

temperature dependence of the index of refraction, we take nNe = 1.10 ± 0.01 [73, 74, 75].

Therefore, the RC model gives GRC
Ne = 1.239 ± 0.024. This is in good agreement with our

experimentally determined value GNe = 1.194 ± 0.036. The predicted 3P1 rate in solid Ne

using the RC model and the frequency cube dependence is also indicated in Figure 4.4(b)

(solid square).

In heavier noble gas solids, we find that the Yb transitions suffer from exacerbated

medium effects. In solid Ar, they manifest in a stronger wavelength dependence of the 3P1

decay rate. Our measurements show ωAr(
1S0 − 3P1) = (562 ± 1 nm)−1, ΓAr(

1S0 − 3P1) =

(1.82 ± 0.19) × 106 s−1, and thus GAr = 1.62 ± 0.17. The larger uncertainty makes solid

Ar a less attractive medium for transition-rate measurements. Nevertheless, this result still
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agrees with the RC model prediction GRC
Ar = 1.69 ± 0.05 with nAr = 1.28 ± 0.02 [76, 75].

In solid Xe, the Yb 3P0 lifetime is shorter than 50 µs due to a much stronger crystal field.

Therefore, the HFQ measurement becomes impossible.

4.5 Summary

In conclusion, we have measured the HFQ rate of the 1S0(F = 1/2)−3P0(F = 1/2) transition

in 171Yb based on the matrix isolation technique using solid Ne and spectrally resolved flu-

orescence decay measurements. We have accounted for medium effects using measurements

of both the 172Yb 3P0 decay and the Yb 3P1 decay in solid Ne. The average 3P1 decay rate

across the emission peak in solid Ne agrees with the RC model prediction. In order to carry

out a more precise study on the index-of-refraction effect, one needs to consider the phonon

interaction to better understand the wavelength dependence.

Finally, the most suitable naturally abundant candidates for the study of the HFQ effect

using this technique are 25Mg, 43Ca, 67Zn, 87Sr, 111Cd, 113Cd, 171Yb, 173Yb, 199Hg, and

201Hg. For each of these candidates, a naturally abundant isotope with zero nuclear spin

is available, and the transition from the ground level to the lowest lying 1P1 is optically

accessible. Lighter atoms are more tightly bound which likely means that the medium

induced corrections are smaller but the efficiency of populating 3P0 is worse. On the other

hand, lighter atoms also have higher 1P1 levels which may provide an alternative and more

efficient path for the 3P0 population.
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CHAPTER 5

OPTICAL PUMPING OF YB NUCLEI IN SOLID NE

Yb has two stable isotopes with nonzero nuclear spins, 171Yb and 173Yb. Ne, on the other

hand, only has one stable isotope with a nonzero nuclear spin, 21Ne, with a natural abun-

dance of 0.27% (Table 5.1). We have made a few attempts to polarize the 171Yb nuclei

in a natural-Ne solid by transverse optical pumping. However, we have not observed the

polarization signal yet for at least two reasons. First, the optical pumping rate in solid

Ne is significantly reduced due to both the broad linewidth of electronic transitions and

the presence of the crystal field. Second, the dark-state detection of the spin polarization

is not feasible due to the unresolved hyperfine structure while the direct detection of the

sample magnetization is challenging because Yb nuclei are very dilute compared to conven-

tional condensed matter samples for nuclear magnetic resonance. Nevertheless, the current

understanding is reported in this chapter to provide a guidance for future efforts.

Table 5.1: Properties of stable Yb and Ne Isotopes with nonzero nuclear spins [77]. M is
the atomic mass, N.A. stands for natural abundance, I is the nuclear spin, gI is the nuclear
g-factor, µ = gIIµN is the nuclear magnetic moment where µN is the nuclear magneton, and
γ = gIµN/~ is the gyromagnetic ratio.

isotope M (u) N.A. (%) I gI µ (µN) γ/2π (Hz/G)
171Yb 170.94 14.28 1/2 0.987 +0.494 745
173Yb 172.94 16.13 5/2 -0.259 -0.648 195
21Ne 20.99 0.27 3/2 -0.441 -0.662 333

5.1 Transverse Optical Pumping

In transverse optical pumping [36], a magnetic holding field is applied perpendicular to

a laser beam. The laser for optical pumping is circularly polarized and is resonant with a

transition of the atoms to be spin polarized. The absorption of photons from this pump beam

creates a spin polarization in the ground state which is then forced into Larmor precession

by the transverse magnetic field. In our case, the intensity of the optical pumping laser, and
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thus the optical pumping rate, is modulated at the Larmor frequency by an acousto-optical

modulator to increase the polarization [78], and the precession of the polarization is read

out by a SQUID magnetometer (Figure 5.1).

Figure 5.1: A sketch of the experimental setup for transverse optical pumping.

The dynamics of the spin ensemble during transverse optical pumping is described by

the phenomenological Bloch equations [79]

dP

dt
= Γ̃p(t)(P0 − P ) + P × ωL − T−1 · P . (5.1)

Here, P = (Px, Py, Pz) is the polarization vector of the spin ensemble. P0 = (P0, 0, 0) is

the polarization vector of the circularly polarized laser beam traveling in the +x direction,

where P0 is the degree of polarization. Γ̃p(t) is the pumping rate modulated at an angular

frequency ω. ωL = (0, 0, ωL) is the Larmor frequency vector given a magnetic holding field

B pointing in the +z direction (the longitudinal direction) with ωL = γB, where γ is the

gyromagnetic ratio of the spins. T−1 = diag(T−1
2 , T−1

2 , T−1
1 ) is the relaxation matrix, where

T1 (T2) is the longitudinal (transverse) relaxation time.

Under the rotating-wave approximation, the Bloch equations can be analytically solved

(Appendix F). The steady-state polarization is

P ≡ |P | = P0 ·
|c1|√

(ω − ωL)2 + (c0 + 1/T2)2
(5.2)

where c0 and c1 are coefficients of the Fourier expansion Γ̃p(t) =
∑
n cneinωt. In our case,

Γ̃p(t) is a square wave with a duty cycle D and a height Γp, the Fourier coefficients of which
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are c0 = DΓp and c1 = Γp sin(Dπ)e−iDπ/π. The steady-state polarization when the laser

modulation frequency is resonant with the Larmor frequency (ω = ωL) is then

Pr = P0 ·
sin(Dπ)/π

D + 1/ΓpT2
. (5.3)

The optimal Dm that maximizes Pr satisfies Dm + (ΓpT2)−1 = π−1 tan(Dmπ) and the max-

imal polarization is Pm = P0 cos(Dmπ). When ΓpT2 � 1, Dm ∼ 1
2−ΓpT2/π

2 and Pm/P0 ∼

ΓpT2/π. When ΓpT2 � 1, Dm ∼ (π2ΓpT2/3)−1/3 and Pm/P0 ∼ 1 − 1
2(ΓpT2/3π)−2/3. To

achieve a high steady-state on-resonance polarization, we can work to increase the degree

of polarization of the photons (P0 ↑), increase the pumping rate (Γp ↑), and increase the

transverse relaxation time (T2 ↑). Among these parameters, the polarization of the photons

is usually well controlled with P0 ∼ 1.

5.2 Pumping Rate for Nuclear Polarization

In a solid Ne matrix, the pumping rate for nuclear polarization is inevitably reduced from

that in vacuum, and the reduction of the pumping rate can be examined in two steps. First,

the overall excitation rate in solid Ne is suppressed because the cross-section is suppressed

as a result of the broadened linewidth (Section 3.3.5). Second, the pumping rate for nuclear

polarization is further suppressed because the crystal field in solid Ne strongly perturbs

the hyperfine interaction which plays a crucial role in transferring angular momenta from

electrons to the nucleus.

5.2.1 Pumping Rate in Vacuum

We use the 6s2 1S0 − 6s6p 3P1 transition for optical pumping because 6s2 1S0 − 6s6p 1P1 is

not closed in solid Ne (Section 3.3.2). However, the 6s6p 3P1 transition is about 200 times

weaker than 6s6p 1P1 due to the flip of the electronic spin S. The hyperfine structure of

6s6p 3P1 in 171Yb is described by the Hamiltonian HHFI = AI ·J ′, where A ∼ 4 GHz is the
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hyperfine constant, I (I = 1/2) is the nuclear spin operator and J ′ (J ′ = 1) is the electron’s

total angular momentum operator. Thus 6s6p 3P1 splits into two hyperfine levels F ′ = 1/2

and 3/2 (Figure 5.2). The hyperfine structure of 6s2 1S0 is simply a doublet F = 1/2.

Figure 5.2: The pumping scheme for polarizing 171Yb nuclei in vacuum using the F =
1/2 ↔ F ′ = 1/2 and 3/2 transitions and the σ+ light. The spontaneous emission rate of
J = 0 ← J ′ = 1 is Γ. The excitation rate of J = 0 → J ′ = 1 is Γe. The pumping rate of
|MF = −1/2〉 → |MF = +1/2〉 is Γp = 2Γe/9 when Γe � Γ.

We assume that the decay rate of J = 0 ← J ′ = 1 is Γ and the excitation rate of

some σ+ light driving |MJ = 0〉 → |M ′J = +1〉 is Γe with Γe � Γ. Γe is calculated

using Γe ∼ (Ie/Isat)(Γ/2), where Ie is the intensity of the excitation light and Isat is the

saturation intensity of the transition. The pumping rate of |MF = −1/2〉 → |MF = +1/2〉

equals Γe multiplied by the absorption probability of |MF = −1/2〉 → |M ′F = +1/2〉

and the decay probability of |MF = +1/2〉 ← |M ′F = +1/2〉. The pumping rate in the

opposite direction can be similarly calculated. Then the net pumping rate Γp equals the

difference of these two rates. Let us take the F = 1/2 ↔ F ′ = 1/2 hyperfine transition as

an example. The absorption probability of |MF = −1/2〉 → |M ′F = +1/2〉 is 2/3 because

|MF = −1/2〉 is purely |MI = −1/2,MJ = 0〉 but |M ′F = +1/2〉 only contains
√

2/3 of

|MI = −1/2,M ′J = +1〉. The decay probability of |MF = +1/2〉 ← |M ′F = +1/2〉 is 1/3 for

the similar reason. Therefore the pumping rate of |MF = −1/2〉 → |MF = +1/2〉 is 2Γe/9.

The pumping rate in the opposite direction is zero, so the net pumping rate Γp is 2Γe/9.

Similar analysis can be made for the F = 1/2 ↔ F ′ = 3/2 hyperfine transition which gives

an identical pumping rate of |MF = −1/2〉 → |MF = +1/2〉.
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5.2.2 Pumping Rate in Solid Ne

In solid Ne, the hyperfine structure of 6s6p 3P1 is not resolved, and thus both hyperfine

transitions are excited with the same probability. The saturation intensity of the 6s2 1S0 −

6s6p 3P1 transition in vacuum is Isat = 0.14 mW/cm2. The saturation intensity in solid Ne

is, however, increased by the linewidth broadening factor W (Section 3.3.5), which is about

7× 106 for 6s2 1S0− 6s6p 3P1 (Table 3.1). The intensity of our on-resonance excitation laser

is Ie ∼ 50 mW/cm2. Therefore Γe ∼ (Ie/WIsat)(Γ/2) = 40 s−1, where Γ ∼ 1.5 × 106 s−1

for 6s2 1S0 − 6s6p 3P1 in solid Ne (Section 4.4).

Now let us consider the perturbation of the crystal field on the hyperfine interaction in

Yb. The crystal field does not change the structure of 6s2 1S0 (F = 1/2) while its effect on

6s6p 3P1 is described by

HHFI+CF = AI · J ′ + U(r), (5.4)

where U(r) is the crystal-field potential. Because the crystal field only acts on the electrons,

we first seek the matrix representation of U(r) in the 3D subspace J ′ = 1 and then use a

Kronecker product (⊗) to promote it to the 6D subspace I = 1/2 ⊗ J ′ = 1. It is shown in

Appendix G that the matrix representation of the crystal field in the J ′ = 1 subspace can

be parametrized by three real amplitudes a0, a1, and a2 and two real phases φ1 and φ2

U (1) =
1√
2π


−
√

1

10
a0 −

√
3

10
a1e
−iφ1 −

√
6

10
a2e
−iφ2

−
√

3

10
a1e

iφ1

√
4

10
a0

√
3

10
a1e
−iφ1

−
√

6

10
a2e

iφ2

√
3

10
a1e

iφ1 −
√

1

10
a0

 . (5.5)

We then find the matrix representation of Hamiltonian (5.4) in the 6D subspace and numer-

ically find its eigenstates |λi〉 (i = 1, 2, · · · 6) given a set of crystal-field parameters.

To estimate the size of the parameters a0, a1, and a2, or essentially the energy scale of

the crystal field, we use the field strength obtained in Section 4.4 (27 MV/m) and use the
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atomic radius of Yb (1.76 Å [25]) as the length scale. Therefore a0, a1, and a2 are on the

order of
√

2π · e · 27 MV/m · 1.76 Å = 12 meV = 96 cm−1 = 720A. At large fields ai � A,

the spectrum of Hamiltonian (5.4) typically splits into three levels, and each level further

splits into two hyperfine levels.

At the presence of the crystal field, the calculation of the pumping rate for nuclear po-

larization [80] is based on the same principle discussed earlier. The difference is that we

need to sum over all the new eigenstates |λ〉 in the excited level. The absorption prob-

ability of |MF = −1/2〉 → |λ〉 is |〈MI = −1/2,M ′J = +1|λ〉|2. The decay probability

of |MF = +1/2〉 ← |λ〉 is
∑
M ′

J
|〈MI = +1/2,M ′J |λ〉|

2. Therefore the pumping rate of

|MF = −1/2〉 → |MF = +1/2 through |λ〉 is

Γe · |〈MI = −1/2,M ′J = +1|λ〉|2 ·
∑
M ′

J
|〈MI = +1/2,M ′J |λ〉|

2. (5.6)

We then sum over all six |λi〉 to get the total pumping rate of |MF = −1/2〉 → |MF = +1/2〉

Γe ·
6∑
i=1

(
|〈MI = −1/2,M ′J = +1|λi〉|2 ·

∑
M ′

J
|〈MI = +1/2,M ′J |λi〉|

2
)
. (5.7)

Similarly, the pumping rate of |MF = +1/2〉 → |MF = −1/2〉 is

Γe ·
6∑
i=1

(
|〈MI = +1/2,M ′J = +1|λi〉|2 ·

∑
M ′

J
|〈MI = −1/2,M ′J |λi〉|

2
)
. (5.8)

The difference between the above two rates gives the net pumping rate Γp.

Given a0, a1, a2 ∼ 720A, we play with different combinations of the crystal-field param-

eters. The resultant Γp is independent of φ1 and φ2 and is roughly on the order of 10−5Γe.

Compared to Γp = 2Γe/9 in the case of no crystal field, such a reduction in pumping rate by

a factor of 104 is identified as the main reason we have not observed the polarization signal.
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5.3 Magnetic Dipolar Broadening

The magnetic dipole interaction between spins in a crystal can broaden the linewidth of

magnetic resonance, or equivalently decrease the transverse relaxation time. This is because

each spin produces its own local magnetic fieldBloc. If the spins are not polarized, then their

Bloc are randomly oriented with respect to the holding magnetic field B, which introduces

an effective inhomogeneity to B.

The calculation starts with the Hamiltonian H = HZ +Hdip,s +Hdip,m that consists of

two types of dipoles µi = γ~Si and µ′m = γ′~S′m subject to a holding field B = Bẑ, where

HZ = γ~BSz (Sz =
∑
i Siz) is the Zeeman term,

Hdip,s =
µ0

4π
γ2~2

∑
i<j

[
Si · Sj
r3
ij

−
3(rij · Si)(rij · Sj)

r5
ij

]
(5.9a)

is the self term of µi interacting with its own type, and

Hdip,m =
µ0

4π
γγ′~2

∑
i,m

[
Si · S′m
r3
im

− 3(rim · Si)(rim · S′m)

r5
im

]
(5.9b)

is the mutual term of µi and µ′m interacting with each other. The goal is to calculate the

absorption linewidth ∆ω of a transverse field B⊥(t) = B⊥x̂ cosωt due to the µi dipoles

via the coupling H⊥ = γ~B⊥Sx cosωt (Sx =
∑
i Six). In H , similar terms like H ′

Z and

H ′
dip,s have already been omitted because we are interested in how µ′m affect the absorption

linewidth of µi rather than µ′m’s own absorption linewidth. The absorption lineshape is

described by the distribution f(ω) =
∑
λ1,λ2

|〈λ1|Sx|λ2〉|2δ(λ1 − λ2 − ~ω), where λ1,2 are

eigenvalues of H . Of course, it is formidable to figure out all the eigenvalues of H , but the

second moment of the distribution f can be readily computed without solving H due to the

invariance of the trace [81],

〈∆ω2〉f = 〈ω2〉f − 〈ω〉2f = −
Tr
(
[H , Sx]2

)
+ Tr2 ([H , Sx]Sx)

~2Tr
(
S2
x

) . (5.10)
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When calculating the commutators and the traces, we should only keep terms in H that

commute with Sz. Inclusion of terms that do not commute with Sz will create subsidiary

absorption peaks at ω = 0, 2γB, (2γ−γ′)B, · · · , and thus the second moment does not truly

reflect the width of the main peak at ω = γB. The retained terms are HZ itself,

H 0
dip,s =

µ0

4π
γ2~2

∑
i<j

1− 3 cos2 θij

r3
ij

(
3

2
SizSjz −

1

2
Si · Sj

)
, (5.11a)

and H 0
dip,m =

µ0

4π
γγ′~2

∑
i,m

1− 3 cos2 θim
r3
im

(SizS
′
mz), (5.11b)

where θij (θim) are the angles between rij (rim) and B. After some lengthy calculations,

we get 〈∆ω2〉f = 〈∆ω2〉f,s + 〈∆ω2〉f,m, where

〈∆ω2〉f,s =
3

2

(µ0

4π

)2
γ4~2S(S + 1)

1

N

∑
i<j

(1− 3 cos2 θij)
2

r6
ij

(5.12a)

and 〈∆ω2〉f,m =
2

3

(µ0

4π

)2
γ2γ′2~2S′(S′ + 1)

1

N

∑
i,m

(1− 3 cos2 θim)2

r6
im

. (5.12b)

The sums in the above equations can be further calculated. It is reasonable to assume

that all the µi sites are equivalent, so that the sums over j and m are independent of i,

and thus
∑
i<j = N

2

∑
j and

∑
i,m = N

∑
m. These sums only include lattice sites that

are occupied by magnetic dipoles. To convert to sums that include all the lattices sites, we

need to insert the dilution factor ξ so that
∑
j = ξ

∑
R and

∑
m = ξ′

∑
R, where R are

the lattice vectors. Since our samples are at best polycrystalline, we can first average the

angular factor over a sphere 1
4π

∫
dΩ(1− 3 cos2 θ)2 = 4

5 . The remaining sum over all lattice

sites is
∑

R r(R)−6 = 14.45 · n2/2 for face-centered-cubic lattice, where n is the number

density of the lattice sites [22]. Combining all the factors, we get

〈∆ω2〉f,s = 14.45 · 3

10

(µ0

4π

)2
γ4~2S(S + 1)ξn2 (5.13a)
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and 〈∆ω2〉f,m = 14.45 · 4

15

(µ0

4π

)2
γ2γ′2~2S′(S′ + 1)ξ′n2. (5.13b)

With ξ(171Yb) ∼ 14.28% × 1 ppm, ξ(173Yb) ∼ 16.13% × 1 ppm, and ξ(21Ne) = 0.27%,

their contributions to the second moment are (0.72 rad/s)2, (0.65 rad/s)2, and (94 rad/s)2,

respectively. Assuming that the lineshape is Gaussian, the transverse relaxation time is

defined as T2 = 〈∆ω2〉−1/2
f . In our case, T2 = 10.6 ms, dominated by the 21Ne nuclear

spins [82]. Using Γp ∼ 1× 10−5Γe = 4× 10−4 s−1 from the previous section, we are in the

ΓpT2 � 1 regime where Dm ∼ 50% and Pm ∼ 1.3× 10−6.

5.4 SQUID Detection

In Figure 5.2, the absorption probability of σ+ light is the same from |MF = ±1/2〉 in the

ground level to the F ′ = 1/2 and 3/2 excited levels. Therefore given that the hyperfine

structure of 171Yb is not resolved in solid Ne, it is impossible to detect the nuclear polariza-

tion using the dark-state method. One alternative optical detection method is the nuclear

spin optical rotation [83] which will not be discussed here. Instead, we use a SQUID mag-

netometer to detect the bulk magnetization of our nuclear spin polarized samples. SQUIDs,

short for Superconducting QUantum Interference Devices, are the most sensitive magnetic

flux detectors. This device, operating at cryogenic temperatures with quantum-limited sen-

sitivity, has demonstrated field resolution at the 10−13 G level. A review on the principles

of SQUID sensors is given in Reference [84].

We use a STAR Cryoelectronics SQUID system that consists of a low-Tc dc SQUID

(SQ1200 LTS), a single-channel SQUID controller (PC-100), and a shielded cryocable (CBL-

C2-10-1). Low-Tc SQUIDs with their internal circuits made of Nb need be cooled below

its transition temperature 9.2 K in order to work properly. In our liquid He cryostat, we

install the SQUID on the cold surface using a copper mount (Figure 5.3). To minimize the

heat load on the SQUID, the cryocable that connects the SQUID and the room-temperature

electronics system is also heatsinked by the cold surface and the liquid N2 shield.
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Figure 5.3: A sketch of the SQUID mount with the STAR Cryoelectronics SQUID installed.
Image courtesy of T. O’Connor.

An external magnetic field is probed by the SQUID through a pick-up coil also made

of Nb. The magnetic flux in the pick-up coil is coupled to the internal SQUID loop by a

flux transformer. Typically, only about 1% of the external flux is transferred to the SQUID

due to the low mutual inductance. Figure 5.4(a) shows a sketch of the cylindrical sapphire

substrate used in optical pumping experiments. Yb/Ne samples are grown on one flat surface

of the cylinder, and one pick-up loop is shown wound around the cylinder. Given a uniform

polarization across the sample, the flux Φ in this pick-up loop is

Φ(d) = Φs

∫ 1

0
dx

∫ 2π

0
dφ

x(1− x cosφ)

(1− 2x cosφ+ x2 + (d/R)2)3/2
, (5.14)

where d is the distance between the sample and the loop, R is the radius of the cylinder,

and Φs is independent of d and has the dimension of magnetic flux (Appendix H).

When R is fixed, Φ/Φs shows a rapid decay as d increases (Figure 5.4(b)). This makes

it feasible to implement a first order gradiometer as the pick-up coil which is less sensitive

to any far-field noise than a zeroth order gradiometer (a single loop). Appendix I describes

the construction of (axial) gradiometers of arbitrary orders. In the case of the first order

gradiometer, the net flux in the pick-up coil is NΦ(d+)−NΦ(d−), where N is the number

of turns of each loop and d± are the distances from the sample to the two counter-wound

loops. The typical dimensions are N = 2, R = 1.27 cm, d+ = 0.1 cm, and d− = 0.6 cm, and

thus Φ(d−) = 0.36Φ(d+), which means that most of the local flux signal is picked up.

56



Figure 5.4: (a) A sketch of the cylindrical substrate used in optical pumping experiments.
The Yb/Ne sample is grown on one end of the cylinder and a pick-up loop is wound around
the cylinder with a distance d away from the sample. (b) The magnetic flux from a polarized
sample in the pick-up loop Φ as a function of d. The polarization is assumed to be uniform
and along the common axis.

The scale of the flux in the pick-up coil is roughly determined by Φs = 1
2µ0µn2,µR, where

µ is the magnetic moment of spins and n2,µ is their 2D density (Appendix H). In our case,

µ is the nuclear magnetic moment of 171Yb and n2,µ = n2,171YbP , where n2,171Yb is the 2D

density of 171Yb and P is the polarization of 171Yb. If we grow the sample with natural Yb

at the rate dsNe/dt = 50 µm/hr and the Yb/Ne dilution factor ξ = 1 ppm for five hours,

then n2,171Yb ∼ 1.6× 1014 cm−2 (Section 2.4). P is estimated in the previous section to be

1.3× 10−6. Then Φs = 2.1× 10−8Φ0, where Φ0 = h/(2e) = 2.1× 10−15 Wb is the magnetic

flux quantum. Together with the number of turns, the numerical factor from the integral in

Equation (5.14), and the coupling efficiency of the SQUID, the flux in the SQUID loop is

only about 2× 10−9Φ0.

We have also measured the SQUID noise. When the SQUID input is internally shorted

by a Nb wire, the SQUID puts out its intrinsic noise. The noise density is typically about

5×10−6 Φ0/
√

Hz below the 5 kHz bandwidth of the SQUID (Figure 5.5, blue curve). When

the input is connected to a pick-up coil, the spectrum reflects the magnetic Johnson noise of

the copper pieces close to the pick-up coil, which exhibits a higher base level that rolls off at

high frequencies (Figure 5.5, red curve). The spikes in the spectrum are mostly the 60 Hz
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noise and its harmonics in the power line. Our holding field is about 4 G and thus the Larmor

frequency of 171Yb is about 3 kHz where the noise density is about 2.5 × 10−5 Φ0/
√

Hz.

When the pick-up coil is not sufficiently cooled, an even higher base level is observed due to

the electric Johnson noise of the wire (Figure 5.5, green curve).

Figure 5.5: The flux noise spectra of the STAR Cryoelectronics SQUID. Blue curve: the
intrinsic flux noise measured with the SQUID input shorted. Red cure: the flux noise when
a first-order-gradiometer pick-up coil is attached. Green curve: the flux noise when the
pick-up coil is not sufficiently cooled.

Compared to the estimated signal, even the intrinsic noise level of the SQUID seems

overwhelmingly high that there is no chance detecting the polarization as it stands. Ways to

improve the signal-to-noise ratio include getting a more powerful laser to increase the optical

pumping rate, using the 21Ne-depleted Ne gas to grow the matrix, and replacing the copper

pieces in the cryostat with non-metallic but thermally conductive materials.
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CHAPTER 6

OUTLOOK

I would like to propose a few experiments to further understand the interaction between the

Yb impurities and the Ne lattice and to work toward polarizing nuclear spins of diamagnetic

atoms trapped in noble-gas solids by optical pumping.

1. Lineshape of La Transitions in Solid Ne

We have established a one-to-one correspondence between the Yb transitions 4f146s2 1S0−

4f135d6s2 (j1, j2)1 and the La transitions 5d6s2 2Dj2 − 4f6s2 2Fj1 , where j1 = 5/2, 7/2 and

j2 = 3/2, 5/2 (Section 3.4.2). Absorption spectroscopy on the La transitions in solid Ne

will provide more insights to the broadening of inner-shell transitions and the splitting of

atomic levels in solid Ne. The La 5d6s2 2D5/2 level is not thermally populated, but it is

metastable and can be populated by driving the 5d6s2 2D3/2 → 4f6s2 2D5/2 transition so

that the transitions from La 5d6s2 2D5/2 can also be probed.

2. Single Atom Detection of Yb in Solid Ne

Due to the enhanced intersystem crossing of Yb in solid Ne (Section 3.3.2), Yb atoms are

able to give off strong green fluorescence under the blue excitation. Basic signal-to-noise ratio

calculations show that optical detection of single Yb atoms in solid Ne is feasible [85]. This

project is in preparation for the single atom detection of Mg in solid Ne with the application

of measuring the cross-section of the nuclear astrophysical reaction 22Ne(α, n)25Mg [86].

3. Hyperfine Quenching Rate in 87Sr

87Sr optical clocks operate with the 5s2 1S0−5s5p 3P0 transition [87]. However, similar to

the 171Yb case, the hyperfine quenching rate of this transition has not been measured before

either. The measurement of this rate in a solid matrix should be feasible using the techniques

we have developed (Chapter 4). However, the Sr intersystem crossing 5s5p 3P ← 5s5p 1P1

is likely to be less enhanced in solid Ne than Yb due to a larger energy difference between

5s5p 1P1 and 4d5s 3D. The hyperfine quenching in Sr is also weaker than that in Yb, and

thus the intrinsic decay rate may experience a larger medium correction.
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4. Dependence of Yb Lifetime on the Index of Refraction

To make a more decisive measurement of the spontaneous emission rate as a function of

the index of refraction, one can combine the matrix-isolation technique with the diamond-

anvil-cell technique [88]. Yb atoms can be implanted into solid Ne by laser ablation and the

index of refraction of solid Ne can be changed by the pressure in the cell. Measurement of

the decay rate of 6s2 1S0 − 6s6p 3P1 in solid Ne has been demonstrated (Section 4.4). The

index of refraction of solid Ne can be measured using the interference principle [74].

5. Hanle Effect of Yb Decay in Solid Ne

One way to investigate if an electronic polarization has been established in the excited

level is to study the Hanle effect [89]. The suitable transition for this study is again 6s2 1S0−

6s6p 3P1 with a decay rate of Γ ∼ 1.5 × 106 s−1. The gyromagnetic ratio of 6s6p 3P1 is

γ/2π ∼ 1.4 × 106 Hz/G. Therefore if we expose Yb/Ne samples in a 5 G field, the Hanle

effect should be most likely observed. The reduced contrast of the oscillation should tell us

about the transverse relaxation time of the electronic spin.

6. Relaxation Times of 171Yb Nuclei in Solid Ne

One way to get a large polarization of 171Yb nuclei in solid Ne is to polarize 171Yb in the

beam and freeze the atoms in noble-gas solids. It has been shown that a large fraction of

nuclear polarization is unaffected by the freezing [90]. Once we have a nuclear spin polarized

sample, we can apply all sorts of techniques in pulsed nuclear magnetic resonance to study

the nuclear-spin relaxation.
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APPENDIX A

LIQUID HE DEWAR AND TRANSFER

A portable liquid He dewar is equipped with three ball valves, three pressure relief valves, a

burst disk, and a pressure gauge for its pressure control and safety (Fig. A.1).

Figure A.1: A picture of a portable liquid He dewar with three ball valves illustrated.

The three ball valves are the transfer valve, the road valve and the vent valve. The

transfer valve located at the vertical transfer port controls the access to liquid He. The

transfer line cannot be inserted into the dewar unless the transfer valve is open. The road

valve together with the 0.5 psig pressure relief valve regulates the dewar pressure. In normal

status, the road valve is open. During the transfer, the road valve is closed for the pressure

build-up. The vent valve opens or closes the vent port which is used to externally pressurize

the dewar during the transfer and relieve the pressure after the transfer.

The three pressure relief valves are 0.5, 10, and 15 psig, respectively. The 0.5 psig valve

regulates the dewar pressure in normal status. This amount of overpressure allows liquid He

to evaporate at a slower rate. The 10 and 15 psig valves and the burst disk provide pressure

safety during the transfer. They cannot be disabled by closing any ball valves. Note that

the maximal pressure an average portable dewar can hold is about 15 psig.

Before transferring liquid He, make sure there are at least two trained experimenters

present, face masks and gloves are worn, and doors and windows are open for ventilation.
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Step 1: Deplete liquid N2 in the liquid He vessel

(1) Attach the T-shaped tube to the liquid He port of the cryostat.

(2) Insert the 3/8” stainless steel tube all the way into the liquid He vessel through the

transfer port of the T-shaped tube.

(3) Connect the vent port of the T-shaped tube to a He gas bottle after purging the gas line

for at least 10 seconds.

(4) Start flowing He gas from the gas bottle to the liquid He vessel to expel the liquid N2.

(5) Once the stainless steel tube starts blowing out white plume instead of liquid N2, the

liquid N2 in the liquid He vessel has been depleted. Stop flowing He gas.

(6) If the temperature of the liquid He vessel climbs up to higher than 120 K, it needs to be

precooled with liquid N2 again.

(7) Disconnect the gas line, withdraw the stainless steel tube, and detach the T-shaped tube.

(8) Cover the liquid He port of the cryostat so that the He gas inside cannot escape.

Step 2: Build up the pressure of the liquid He dewar

(1) Make sure the initial status of all the valves is correct. The vent valve and the transfer

valve are closed, and the road valve is open.

(2) Open the vent valve to release the 0.5 psig pressure and then close. Close the road valve.

(3) Slide the adapter nut to 10” from the end of the transfer line, open the transfer valve,

insert the transfer line into the dewar through the transfer port, and tighten the nut.

(4) Monitor the pressure gauge on the dewar, and continue to slowly insert the transfer line

until the pressure reaches 5∼10 psig.

(5) If the pressure cannot reach 5∼10 psig, proceed to Step 4(1) for external pressurization.

(6) If the pressure goes above 10 psig, the 10 psig pressure relief valve will be triggered.

Crack open the vent valve to help release the pressure until it falls back to 5∼10 psig.

(7) Make sure the transfer line almost touches the bottom of the dewar and the pressure is

stable at 5∼10 psig.

(8) Wait and watch the outlet of the transfer line. Initially, there is a gentle gas-flowing
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sound which will get louder until the white plume blows out about 10 minutes later. Now it

is ready to transfer liquid He to the cryostat.

Step 3: Transfer liquid He to the liquid He vessel

(1) Uncover the liquid He port of the cryostat and attach the T-shaped tube.

(2) Insert the transfer line into the liquid He vessel through the T-shaped tube until it almost

touches the bottom. Tighten the adapter nut, and now liquid He is being transferred.

(3) Initially, there is strong white plume blowing from the vent port of the T-shaped tube,

which indicates that liquid He is cooling down the vessel.

(4) After about 5 minutes, the white plume becomes significantly weaker which indicates

that liquid He starts collecting in the vessel.

(5) After 30∼45 minutes, the white plume becomes strong again and unstable, and liquid

air is dripping from the vent port. This indicates that the liquid He vessel is full.

(6) Detach the T-shaped tube together with the transfer line from the liquid He port.

(7) If the dewar is externally pressurized, proceed to Step 4(4).

(8) Crack open the vent valve to release pressure of the dewar. After the pressure falls back

to 0 psig, withdraw the transfer line from the liquid He dewar.

(9) Open the road valve and close the transfer valve and the vent valve. The liquid He

transfer is finished.

Step 4: Externally pressurize the liquid He dewar

(1) Crack open the vent valve to purge the vent port with the He vapor inside the dewar.

(2) Connect the vent port to a He gas bottle after purging the gas line for at least 10 seconds.

(3) Increase the pressure of the gas regulator to 5∼10 psig and fully open the vent port of

the dewar. Now the pressure of the dewar is maintained by the He gas bottle. The pressure

gauge on the dewar should read the same pressure as the regulator. Proceed to Step 2(6).

(4) Close the vent valve and turn off the supply from the gas bottle. Disconnect the gas line

from the vent port. Proceed to Step 3(8).
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APPENDIX B

RUSSEL-SAUNDERS COUPLING IN YB

The excitations of the two 6s electrons in Yb are well approximated by the Russel-Saunders

coupling scheme, or the LS coupling scheme. In this scheme, the spin-orbit interaction can

be considered as a perturbation to the residual Coulomb interaction. Therefore, we first

construct the orbital wave functions that diagonalize the residual Coulomb interaction. Due

to the Fermi statistics, the constructed wave functions must have exchange symmetry.

Note that given two single-electron states n1l1 and n2l2, we can put either electron in

the first state and the other in the second. Therefore in the uncoupled scheme, the basis

vectors come in two groups

|ψ(1)
n1l1m1

ψ
(2)
n2l2m2

〉, |ψ(1)
n2l2m2

ψ
(2)
n1l1m1

〉. (B.1)

In the LS coupling scheme, the new basis vectors are eigenstates of the total angular momenta

L̂2 = (l̂1 + l̂2)2 and L̂z = l̂1z + l̂2z

|LML〉1 =
∑
m1,m2

C(LML; l1m1l2m2)|ψ(1)
n1l1m1

ψ
(2)
n2l2m2

〉, (B.2a)

|LML〉2 =
∑
m1,m2

C(LML; l1m1l2m2)|ψ(1)
n2l2m2

ψ
(2)
n1l1m1

〉, (B.2b)

where C(LML; l1m1l2m2) are the Clebsch-Gordon coefficients. Since |LML〉1,2 are related

by swapping the two electrons, the exchange symmetric and antisymmetric orbital wave

functions are

|LML〉± = (|LML〉1 ± |LML〉2)/
√

2, (B.3)

which happen to diagonalize the residual Coulomb interaction.

The spin wave functions with exchange symmetry are simply the triplet and the singlet

states |SMS〉±. Therefore the total wave functions |LMLSMS〉 which must be exchange
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antisymmetric are

|LML〉+|SMS〉−, |LML〉−|SMS〉+. (B.4)

These states, abbreviated as terms 2S+1L, are eigenstates of the parity P̂ , the angular

momenta L̂2, Ŝ2, L̂z and Ŝz, and the Hamiltonian Ĥ with the spin-orbit interaction ignored

P̂ |LMLSMS〉 = (−1)l1+l2|LMLSMS〉, (B.5a)

L̂2|LMLSMS〉 = L(L+ 1)~2|LMLSMS〉, (B.5b)

Ŝ2|LMLSMS〉 = S(S + 1)~2|LMLSMS〉, (B.5c)

L̂z|LMLSMS〉 = ML~|LMLSMS〉, (B.5d)

Ŝz|LMLSMS〉 = MS~|LMLSMS〉, (B.5e)

Ĥ|LMLSMS〉 = E(L,±)|LMLSMS〉. (B.5f)

Here are two examples. (1) The configuration 6s6p (l1 = 0, l2 = 1) of Yb has an odd

parity since l1 + l2 = 1. Such a configuration leads to two terms 1P and 3P since L can

only be 1. According to Hund’s rule, 3P has a lower energy due to its larger multiplicity

2S + 1. (2) The configuration 6p2 (l1 = l2 = 1) has an even parity since l1 + l2 = 2. When

two electrons have the same n and l, it can be shown from the properties of Clebsch-Gordon

coefficients that |LML〉1 = (−1)2l−L|LML〉2. For l1 = l2 = 1, in principle we can have L =

0, 1 or 2. But when L = 0 or 2, the antisymmetric state |L,ML〉− vanishes, whereas when

L = 1, the symmetric state |L,ML〉+ vanishes. Therefore the allowed terms for 6p2 are 1S,

1D and 3P , among which 3P has the lowest energy.
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APPENDIX C

STARK MIXING BY CRYSTAL FIELD

The crystal field in solid Ne can induce Stark mixing between atomic states of Yb atoms.

The matrix element of HS = e
∑
mEmrm between two states |J1M1〉 and |J2M2〉 is

〈J1M1|HS|J2M2〉 = e
∑
m

Em〈J1M1|rm|J2M2〉 = e
∑
m

Em
〈J1||r||J2〉√

2J1 + 1
〈J2M2; 1m|J1M1〉,

(C.1)

where the Wigner-Eckart theorem is applied to obtain the last equality, 〈J1||r||J2〉 is the re-

duced matrix element of the dipole operator, and 〈J2M2; 1m|J1M1〉 are the Clebsch-Gordan

coefficients. Reduced matrix elements between eleven low-lying Yb levels are calculated [67].

We can define the coupling between two levels as an incoherent sum of couplings between

two states,

|〈J1|HS|J2〉|2 ≡
∑
M1M2

|〈J1M1|HS|J2M2〉|2 . (C.2)

In expanding the square on the right-hand side with HS = e
∑
mEmrm, we get terms that

look like e2∑
m,m′ EmE

∗
m′〈J1M1|rm|J2M2〉〈J1M1|rm′|J2M2〉∗. Since the solid Ne samples

we grow are at best polycrystalline, the crystal field is randomly oriented within one sample.

Therefore it is legitimate to first carry out an average over the crystal-field orientation and

replace EmE
∗
m′ by (E2/3)δmm′ , where E is the mean magnitude of the crystal field in solid

Ne. We then are left with

|〈J1|HS|J2〉|2 =
e2E2

3

∑
M1M2m

|〈J1,M1|rm|J2,M2〉|2. (C.3)

To proceed the calculation with the Wigner-Eckart theorem, we utilize the orthogonality of

Clebsch-Gordan coefficients
∑
M2m

|〈J2M2; 1m|J1M1〉|2 = 1. We finally have

|〈J1|HS|J2〉|2 =
e2E2

3
|〈J1||r||J2〉|2 or simply 〈J1|HS|J2〉 =

eE√
3
〈J1||r||J2〉. (C.4)
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With the coupling between levels properly defined, we can calculate how the crystal field

perturbs the atomic levels. For the diagonal part, we inherit the atomic Hamiltonian for a

free Yb atom. We diagonalize the perturbed Hamiltonian and find the new eigenstates. In

particular, the admixture of 6s6p 3P1 in 6s6p 3P0 makes the dominant contribution to the

induced decay rate of 6s6p 1S0 ← 6s6p 3P0 for even Yb isotopes in solid Ne.

The spontaneous emission rate from one level |J1〉 to another level |J2〉 is the same as

from any state |J1M1〉 to the level |J2〉, which is given by

Γ =
e2ω3

0

3πε0~c3
∑
M2

|〈J1M1|rM1−M2
|J2M2〉|2 =

e2ω3
0

3πε0~c3(2J1 + 1)
|〈J1||r||J2〉|2. (C.5)

Suppose (3P0)m ' (3P0)v + β(E)(3P1)v + · · · and (1S0)m ' (1S0)v + · · · , and then we have

Γ[(1S0)m ← (3P0)m] =
e2
(
ω[(1S0)m]− ω[(3P0)m]

)3
3πε0~c3(2× 0 + 1)

β2(E)|〈(3P1)v||r||(1S0)v〉|2. (C.6)

In Section 4.2, we find this rate to be about 2×10−2 s−1 from which the crystal-field strength

is calculated to be 27 MV/m. With this field strength, the level-mixing coefficients between

eight low-lying levels in Yb are listed in Table C.1.

Table C.1: Level-mixing coefficients between eight low-lying levels in Yb with an electric-field
strength E = 27 MV/m.

(1S0)v (3P0)v (3P1)v (3P2)v (3D1)v (3D2)v (3D3)v (1P1)v

(1S0)m 1 −5E−10 −2E−4 −1E−9 2E−7 3E−7 2E−12 −1E−3

(3P0)m 2E−8 1 8E−5 2E−5 −2E−3 −3E−7 −8E−8 1E−6

(3P1)m 2E−4 −9E−5 1 7E−5 −2E−3 −4E−3 −4E−7 4E−6

(3P2)m −9E−9 −2E−5 −9E−5 1 −8E−4 −3E−3 −7E−3 5E−6

(3D1)m −3E−6 2E−3 2E−3 8E−4 1 −3E−4 −4E−5 −3E−3

(3D2)m −7E−6 5E−7 4E−3 3E−3 2E−4 1 −3E−4 −7E−3

(3D3)m 1E−9 3E−8 8E−7 7E−3 4E−5 2E−4 1 1E−6

(1P1)m 1E−3 6E−6 3E−5 1E−5 3E−3 7E−3 −1E−6 1

67



APPENDIX D

RATE EQUATIONS FOR EXCITATION DYNAMICS

The dynamics of Yb atoms in solid Ne excited by the 388 nm light can be approximated by

a four-level system (Figure D.1). State |1〉, being the ground state, represents 6s2 1S0. State

|2〉, being the final state of the transition the excitation light is driving, represents 6s6p 1P1.

State |2〉 can not only directly decay to |1〉 but through the intermediate states |3〉 and |4〉.

The branching ratios of |3〉 ← |2〉 and |4〉 ← |2〉 are comparable, but the decay of |4〉 is much

slower than |3〉. States |3〉 and |4〉 represent 6s6p 3P0,1,2, with 6s6p 3P1 well described by

|3〉 and 6s6p 3P0 by |4〉. The classification of 6s6p 3P2 is not clear because it is metastable

in vacuum but its slow decay is not observed in solid Ne.

The parameters are assigned as follows. Ni is the population of state |i〉. The excitation

rate of the laser is Γe. The decay rate of |i〉 ← |j〉 is Γij . The magnitudes of the rates are

Γe,Γ32,Γ42,Γ13,Γ14 � Γ12, Γ14 � Γ32 ∼ Γ42 � Γ13. The rate equations, in accordance

with Einstein’s treatment of atomic absorption and emission, are



N1 +N2 +N3 +N4 = 1

dN2

dt
= Γe(N1 −N2)− (Γ12 + Γ32 + Γ42)N2

dN3

dt
= Γ32N2 − Γ13N3

dN4

dt
= Γ42N2 − Γ14N4

(D.1)

with the initial conditions N1(0) = 1 and N2(0) = N3(0) = N4(0) = 0.

Before numerically solving the equations, let us analyze the dynamics. There are three

processes involved, |1〉 ↔ |2〉, |1〉 → |2〉 → |3〉 → |1〉, and |1〉 → |2〉 → |4〉 → |1〉, each

much faster than the next one. Therefore every time we focus on only one process with the

dynamics of slower processes ignored. The result of solving a faster process will become a

constraint when solving a slower process.
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Figure D.1: The energy levels of the rate-equation model that describes the dynamics of Yb
atoms in solid Ne when excited by the 388 nm light. The solid upward arrow indicates the
optical excitation and the dashed downward arrows indicate the spontaneous decays.

The first process |1〉 ↔ |2〉 is the absorption and emission in a two-level system


N1 +N2 = 1

dN2

dt
= Γe(N1 −N2)− Γ12N2

(D.2)

with initial conditions N1(0) = 1 and N2(0) = 0. The solution is that N1 (N2) exponentially

decreases (increases) to the equilibrium population N2/N1 = Γe/(Γ12 + Γe) ∼ Γe/Γ12 with

a time constant (Γ12 + 2Γe)−1 ∼ Γ−1
12 . It implies that after a few Γ−1

12 , N2 is locked to N1

with a ratio of Γe/Γ12 as long as N1 does not vary at a rate faster than Γ12.

We then use the above constraint in solving the second process |1〉 → |2〉 → |3〉 → |1〉


N1 +N2 +N3 = 1

dN2

dt
= Γe(N1 −N2)− (Γ12 + Γ32)N2

dN3

dt
= Γ32N2 − Γ13N3

=⇒


N1 + ηN1 +N3 = 1

dN3

dt
= Γ32(ηN1)− Γ13N3

, (D.3)

where η = N2/N1 = Γe/Γ12. The initial conditions for the constrained equations areN1(0) =

(1+η)−1 and N3(0) = 0. The solution is that N1 (N3) exponentially decreases (increases) to
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Figure D.2: The solution to the rate equations (D.1) with Γe = 102 s−1, Γ12 = 103 s−1,
Γ32 = Γ42 = 10 s−1, Γ13 = 102 s−1, and Γ14 = 10−1 s−1. The times it takes to reach the
equilibrium between different states agree with the breakdown analysis.

the equilibrium population N3/N1 = ηΓ32/Γ13 with a time constant (ηΓ32 + Γ13)−1 ∼ Γ−1
13 .

It implies that after a few Γ−1
13 , N3 is locked to N1 with a ratio of ηΓ32/Γ13 as long as N1

does not vary at a rate faster than Γ13. The last process |1〉 → |2〉 → |4〉 → |1〉 is similar

except that it happens with a time constant (ηΓ42 + Γ14)−1 ∼ (ηΓ42)−1. Therefore both N2

and N3 have already been locked to N1.

We now numerically solve Equations (D.1) with the parameters Γe = 102 s−1, Γ12 = 103

s−1, Γ32 = Γ42 = 10 s−1, Γ13 = 102 s−1, and Γ14 = 10−1 s−1. Figure D.2 shows the

evolution of the populations. The numerical result agrees with our breakdown analysis very

well. N2 takes about a few Γ−1
12 = 10−3 s to reach the equilibrium with N1. Then N3 takes

about a few Γ−1
13 = 10−2 s to reach the equilibrium with N1 and N2. Finally, N4 takes about

a few (ηΓ42)−1 = 1 s to reach the equilibrium with N1, N2, and N3.

What it implies for Yb atoms in solid Ne is that after the 388 nm excitation light is

turned on, the population of both 6s6p 1P1 and 6s6p 3P1 will quickly reach the equilibrium

with 6s2 1S0 and follow the change of its population. Since the 388 nm light is capable of

depleting 6s2 1S0, this dynamics must be reflected in the fluorescence intensity of 6s6p 3P1

as a decay after the initial build-up.
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APPENDIX E

DEAD-TIME CORRECTION FOR PERIODIC COUNTS

We use a PMT to record the dynamics of the Yb 6s6p 3P1 emission in solid noble-gas

matrices. The emission signal is caused by the excitation of a laser chopped at frequency ν.

The measurement is timed by a time base that is ticking at frequency ν0. Once a photon

(indexed by n) is detected by the PMT, the data acquisition system records its timestamp

with respect to the initial trigger by the order of the chopping cycle (indexed by in) and the

order of bin (indexed by jn) within that cycle. The bin width is 1/ν0.

After some time T0, we collectN photons with timestamps {tn = (in, jn)|n = 1, 2, · · · , N}.

Apparently, 1 ≤ i1 ≤ i2 ≤ · · · ≤ iN ≤ Nc and 1 ≤ jn ≤ Nb for any n, where Nc = νT0 is

the total number of chopping cycles and Nb = ν0/ν is the number of bins in each cycle. To

study the averaged signal in one chopping cycle, we plot the histogram {Hj |j = 1, 2, · · · , Nb},

where Hj is total the number of photons registered in bin j and
∑Nb
j=1Hj = N . PMT pulses

are gated in the nonretriggerable mode with a dead time td to eliminate after-pulsing. Once

a photon is registered at time t, no photons can be registered within [t, t + td]. Therefore

the count Hj does not include those unregistered photons during the dead time.

The true count H̄j is calculated as follows. The lost count H̄j − Hj should equal the

average number of photons arriving in bin j per chopping cycle multiplied by the number of

times bin j falls in the dead-time windows caused by the registered photons. This is because

each bin is only counted once in one chopping cycle. The first factor is nothing but H̄j/Nc,

where we have used the true count itself. To figure out the second factor, note that bin j

only falls in the dead-time windows of those registered photons whose bin indices j′ belong

to the class Cj = {j − ν0td, · · · , j − 2, j − 1} mod Nb. Cj will have repeating indices if

ν0td > Nb. The second factor is then
∑
j′∈Cj

Hj′ . Therefore we have

H̄j −Hj =
H̄j
Nc
·
∑
j′∈Cj

Hj′ . (E.1)
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Solve for the true count H̄j ,

H̄j =
Hj

1−
∑
j′∈Cj

Hj′/Nc
. (E.2)

In the continuous case, the above equation becomes

H̄(t) =
H(t)

1−
∫ t
t−td H(t′)dt′/T0

, (E.3)

where H(t) and H̄(t) are periodic functions defined over (−∞,∞). During the transition to

the continuum, the periodicity of H(t) automatically takes care of the potentially repeating

indices in Cj .

Let us take a look at a particular data set we took on October 24, 2013. The numbers are

ν = 50 kHz, ν0 = 20 MHz, Nb = 400, Nc = 21, 039, 371, N = 2, 147, 000, and ν0td = 212.

Since the dead time is shorter than the chopping cycle, Cj does not contain repeating indices.

For example, C120 = {308, 309, · · · , 400, 1, 2, · · · , 119}. Figure E.1 shows the count {Hj}

before the correction (red) and the count {H̄j} after the correction (blue), and the dead-time

correction itself (black).
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Figure E.1: Red dots: the counting histogram before correction; Blue dots: after correction;
Black dots: the dead time correction.
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APPENDIX F

PHENOMENOLOGICAL BLOCH EQUATIONS

The solution to the phenomenological Bloch equations (5.1) in this appendix is a generaliza-

tion of the result in Reference [78]. We first note that the z-component equation

dPz
dt

= −Γ̃p(t)Pz − Pz/T1 (F.1)

is decoupled from the x- and y-components and thus has a trivial solution Pz(t) ≡ 0 for the

initial condition Pz(0) = 0. The remaining x- and y-component equations are written in a

complex form

dP
dt

= Γ̃p(t)(P0 − P)− P/T2 + iωLP , (F.2)

where the complex polarization P = Px + iPy. For the periodic optical pumping rate Γ̃p(t)

with an angular frequency ω, we Fourier expand it

Γ̃p(t) =
∞∑

n=−∞
cne

inωt, (F.3)

where the Fourier coefficients are

cn =
ω

2π

∫ 2π/ω

0
Γ̃p(t)e−inωtdt. (F.4)

Equation (F.2) is solved by a steady-state ansatz P = Pse
iωt, where Ps is a complex am-

plitude. In the spirit of the rotating-wave approximation, we only keep the eiωt terms and

then we have

Ps = P0 ·
c1

i(ω − ωL) + (c0 + 1/T2)
. (F.5)

The steady-state polarization is

P ≡ |P | = |P| = |Ps| = P0 ·
|c1|√

(ω − ωL)2 + (c0 + 1/T2)2
. (F.6)
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To obtain the build-up of the polarization, we use the ansatz P = Ps(1 − e−t/τ )eiωt to

solve Equation (F.2), where τ is a complex time constant. Again under the rotating-wave

approximation, we have τ−1 = i(ω − ωL) + (c0 + 1/T2) and the same Ps in Equation (F.5).

The whole solution is

P = P0 ·
c1

i(ω − ωL) + (c0 + 1/T2)

(
1− e−i(ω−ωL)te−(c0+1/T2)t

)
eiωt, (F.7)

and the time-dependent polarization is

P (t) = P0 ·
|c1|√

(ω − ωL)2 + (c0 + 1/T2)2
·
√

1− 2 cos[(ω − ωL)t]e−(c0+1/T2)t + e−2(c0+1/T2)t.

(F.8)

When off resonance, the polarization builds up in an under-damped oscillatory way with the

angular frequency of the oscillation equal to the detuning ω − ωL. When on resonance, it

simply becomes an exponential build-up

P (t) = P0 ·
|c1|

c0 + 1/T2

(
1− e−(c0+1/T2)t

)
, (F.9)

where the build-up time is (c0 + 1/T2)−1.

Figure F.1: The solution to Equation (F.2) with Γ̃p(t) = Γp(1 + sinωt)/2, Γp = 1 s−1,
T2 = 0.2 s, and ωL = 2π × 200 rad/s. The red curves are analytical results under the
rotating-wave approximation. The blue curves are numerical results. (a) The off-resonance
case, ω − ωL = 2π × 100 rad/s. (b) The on-resonance case.
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To verify the analytical result, we numerically solve the Bloch equations for sinusoidally

modulated Γ̃p(t) = Γp(1 + sinωt)/2 of which the Fourier coefficients are c0 = Γp/2 and

c1 = Γp/4i. The parameters we use are Γp = 1 s−1, T2 = 0.2 s, ωL = 2π × 200 rad/s.

In Figure F.1(a) ω has a 2π × 10 rad/s detuning from ωL, while in Figure F.1(b) ω is on

resonance with ωL. The plots show that the analytical solution under the rotating-wave

approximation only describes the exact polarization averaged over a 2π/ω period of time.

75



APPENDIX G

CRYSTAL-FIELD HAMILTONIAN

To diagonalize the Hamiltonian (5.4), we first find the matrix representation of the crystal

field in the J ′ = 1 subspace of 6s6p 3P1 and then promote it to the I = 1/2⊗J ′ = 1 subspace

by a Kronecker product. The crystal-field potential U(r) is expanded

U(r) =
∑
lm

Klm(r)Ylm(Ω), (G.1)

where Ylm(Ω) are the spherical harmonics. Since the 6s electron does not respond to the crys-

tal field, we can use single-particle wave functions of the 6p electron ψM (r) = RM (r)Y1M (Ω)

to approximate the three |J ′ = 1,M ′〉 states of 6s6p 3P1. The matrix elements are

U
(1)
M ′

1M
′
2

=
∑
lm

∫
r2drR∗M ′

1
(r)Klm(r)RM ′

2
(r)

∫
dΩY ∗1M ′

1
(Ω)Ylm(Ω)Y1M ′

2
(Ω). (G.2)

The angular integral enforces selection rules that only l = 0 and 2 terms in the sum survive

and m = M ′1−M
′
2. The l = 0 term is proportional to the identity matrix and thus does not

change the energy eigenstates. Therefore U
(1)
M ′

1M
′
2

becomes

∫
r2drR∗M ′

1
(r)K2M ′

1−M ′
2
(r)RM ′

2
(r) = qM ′

1−M ′
2

(G.3)

multiplied by a constant obtained from the angular integral. The hermicity dictates q∗m =

(−1)mq−m, so we parameterize q0 = a0, q1 = −q∗−1 = a1e
iφ1 , and q2 = q∗−2 = a2e

iφ2 with

a0, a1, a2, φ1, φ2 ∈ R. The crystal-field matrix in the J ′ = 1 subspace is then

U (1) =
1√
2π


−
√

1

10
a0 −

√
3

10
a1e
−iφ1 −

√
6

10
a2e
−iφ2

−
√

3

10
a1e

iφ1

√
4

10
a0

√
3

10
a1e
−iφ1

−
√

6

10
a2e

iφ2

√
3

10
a1e

iφ1 −
√

1

10
a0

 . (G.4)
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We use Kronecker products (⊗) to construct the 6D space from the 2D space of I = 1/2

and the 3D space of J ′ = 1 and solve the Hamiltonian (5.4) in the 6D space of I = 1/2⊗J ′ =

1. The matrix representations of angular momentum operators are

j
(1/2)
x =

1

2

0 1

1 0

 , j
(1/2)
y =

1

2

0 −i

i 0

 , and j
(1/2)
z =

1

2

−1 0

0 1

 (G.5)

in 2D and

j
(1)
x =

1√
2


0 1 0

1 0 1

0 1 0

 , j
(1)
y =

1√
2


0 −i 0

i 0 −i

0 i 0

 , and j
(1)
z =

1√
2


−1 0 0

0 0 0

0 0 1

 (G.6)

in 3D. Therefore the Hamiltonian matrix in the 6D space is

H 6×6
HFI+CF = κ

(
j
(1/2)
x ⊗ j(1)

x + j
(1/2)
y ⊗ j(1)

y + j
(1/2)
z ⊗ j(1)

z

)
+ 12 ⊗ U (1), (G.7)

where 12 is the 2D identity matrix. The basis vectors in the 6D space are also Kronecker

products of the 2D and the 3D basis vectors. For example, since (1, 0) represents |MI =

−1/2〉 and (1, 0, 0) represents |M ′J = −1〉, then (1, 0, 0, 0, 0, 0) = (1, 0) ⊗ (1, 0, 0) represents

|MI = −1/2,M ′J = −1〉. Given a set of crystal-field parameters a0, a1, a2, φ1, and φ2, the

eigenvalues of the Hamiltonian matrix (G.7) can be numerically obtained and are labeled as

λi with eigenstates |λi〉 (i = 1, 2, · · · , 6).
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APPENDIX H

MAGNETIC FLUX OF A UNIFORMLY POLARIZED DISK

Consider the case where the polarized disk and the pick-up loop are coaxial (Figure H.1).

Let the radius of the disk be R, that of the loop be R′, and the distance between them be d.

The disk has a uniform surface density of magnetic dipoles n2,µ, and each magnetic dipole

has a magnetic dipole moment µ polarized perpendicular to the disk.

Figure H.1: A pick-up loop coaxially aligned with a uniformly polarized disk.

The magnetic flux Φ is the surface integral of the flux density B generated by the disk

on a two dimensional surface Σ enclosed by the loop. Using Stoke’s theorem and the vector

potential A, we can write

Φ =

∫∫
Σ

dΣ ·B =

∫∫
Σ

dΣ · (∇×A) =

∮
∂Σ

d(∂Σ) ·A, (H.1)

where ∂Σ is in fact the loop itself. Due to the azimuthal symmetry, A is tangential to the

loop and has the same magnitude along the loop. Therefore the line integral is simplified

Φ =

∮
loop

d(∂Σ) ·Adisk = 2πR′ · |A0
disk|, (H.2)

where A0
disk can be calculated at any point on the loop, for example (R′, 0, d).
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Consider an infinitesimal area dxdy on the disk, which has a magnetic dipole moment

dm = µn2,µdxdyẑ. Its contribution to A0
disk is

dA0
disk =

µ0

4π

dm× r
r3

, (H.3)

where r is the displacement vector from dm to (R′, 0, d). A0
disk is then the integral of dA0

disk

over the disk. Using polar coordinates ρ, φ, and z, we have

r = (R′ − ρ cosφ,−ρ sinφ, d), r =

√
R′2 − 2R′ρ cosφ+ ρ2 + d2, (H.4)

dm× r = µn2,µρdρdφ(ρ sinφx̂+ (R′ − ρ cosφ)ŷ). (H.5)

The x-component of dm× r is integrated to zero since we expect A0
disk to be along y-axis

at (R′, 0, d). Therefore the magnetic flux from the disk inside the loop is

Φ = 2πR′ ·
µ0µn2,µ

4π

∫ R

0
ρdρ

∫ 2π

0
dφ

R′ − ρ cosφ

(R′2 − 2R′ρ cosφ+ ρ2 + d2)3/2
. (H.6)

Define α = R′/R and β = d/R and the magnetic flux can be written Φ = Φdiskg(α, β),

where Φdisk = 1
2µ0µn2,µR and

g(α, β) =

∫ 1

0
dx

∫ 2π

0
dφ

αx(α− x cosφ)

(α2 − 2αx cosφ+ x2 + β2)3/2
. (H.7)

Φdisk is in the dimension of magnetic flux and only depends on the parameters of the disk

while g(α, β) is a dimensionless function. g(α, β) logarithmically diverges when (α, β) ap-

proaches the segment {0 ≤ α ≤ 1, β = 0}. The physical meaning is that when the disk

and the loop are coplanar, the loop has to be larger than the disk in order to have a well-

defined flux. Here are two asymptotic behaviors of g(α, β) and Φ. When β � α ∼ 1,

g(α, β) ∼ πα2/β3 and Φ ∼ πµ0µn2,µR
′2R2/2d3. When α � β ∼ 1, g(α, β) ∼ π/α and

Φ ∼ πµ0µn2,µR
2/R′.
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APPENDIX I

AXIAL-GRADIOMETER TYPE PICK-UP COIL

An n-th order axial gradiometer pick-up coil is designed to measure the n-th order gradient

of a field. Consider a pick-up coil consisting of n + 1 loops with an identical area δa and

alternating winding directions (Figure I.1). The number of turns for each loop is given by

the binomial coefficients Ckn (0 ≤ k ≤ n). The loops are uniformly placed along an axis with

a spacing d and the normal of the loops is parallel to the axis. The dimension of the pick-up

coil is assumed to be small compared to the variation length of the magnetic field.

Figure I.1: A sketch of the n-th order axial gradiometer.

The total flux δΦ generated by the axial component of a magnetic field Bz(z) in this

pick-up coil is

δΦ =
n∑
k=0

(−1)kCknBz

(
k

n
d

)
δa. (I.1)

Substituting the Taylor expansion of Bz(z) around z = 0 into the flux density, we have

δΦ

δa
=

n∑
k=0

(−1)kCkn

∞∑
m=0

B
(m)
z (0)

m!

(
k

n
d

)m
=
∞∑
m=0

(
n∑
k=0

(−1)kCknk
m

)
B

(m)
z (0)

m!

(
d

n

)m
.

(I.2)

We are going to show that for any m < n, the sum in the parentheses
∑n
k=0(−1)kCknk

m

vanishes. Therefore all the gradients of the magnetic field B
(m)
z (0) lower than the n-th order

cancel out in the measured flux density.
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Note that the following identity holds for any non-negative integers m and n

[(
x

d

dx

)m
(1− x)n

]
x=1

=
n∑
k=0

(−1)kCknk
m, (I.3)

which can be seen by first doing the binomial expansion on the left-hand side, then taking

the derivatives m times, and finally setting x to 1. If we take the derivatives first, it is easy

to observe that for m < n each term in the result has at least one factor of (1−x). Therefore

setting x to 1 kills all the terms and we arrive at the following identity

n∑
k=0

(−1)kCknk
m = 0 (m < n). (I.4)

This means the expansion of the flux density starts from the n-th order term

δΦ

δa
=
∞∑
m=n

(
n∑
k=0

(−1)kCknk
m

)
B

(m)
z (0)

m!

(
d

n

)m
= (−1)nB

(n)
z (0)

(
d

n

)n
+O(dn+1), (I.5)

which is proportional to the n-th order gradient of the magnetic field.
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[52] E. Träbert, M. Grieser, J. Hoffmann, C. Krantz, S. Reinhardt, R. Repnow, A. Wolf,
and P. Indelicato. M1,M2 and Hyperfine-Induced Decay Rates in Mg-like ions of Co,
Ni and Cu Measured at a Heavy-Ion Storage Ring. New J. Phys., 13:023017, 2011.

[53] S. Schippers, D. Bernhardt, A. Müller, M. Lestinsky, M. Hahn, O. Novotný, D. W.
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