ce(q)=Integral{ j0(qr)*(u(r)**2+w(r)**2) dr }
cl(q)=Integral{ (j0(qr)+j2(qr))*1.5*w(r)**2 dr }
cs(q)=Integral{ j0(qr)*(u(r)**2-.5*w(r)**2) + j2(qr)*(sqrt(1/2)*u(r)*w(r)+.5*w(r)**2) dr }
cq(q)=Integral{ j2(qr)*(3.*sqrt(1/2)*u(r)*w(r)-.75*w(r)**2)/q**2 dr }
mdeut=mn+mp-ebind
mr=2*mn*mp/(mn+mp)
gc(q)=2.*ges*ce(q)
gm(q)=(mdeut/mr)*(ges*cl(q)+2.*gms*cs(q))
gq(q)=2.*ges*cq(q)
tau=q**2/(2*mdeut/hc)**2
A(q)=gc(q)**2+(8/9)*(tau*gq(q))**2+(2/3)*tau*gm(q)**2
B(q)=(4/3)*tau*(1.+tau)*gm(q)**2
theta=(70/90)*pi/2 ! theta=70 deg
x=(2/3)*tau*gq(q)/gc(q)
y=(1/3)*tau*(gm(q)/gc(q))**2*(1+2*(1+tau)*tan(theta/2)**2)
t20(q)=-sqrt(2)*(x*(x+2)+.5*y)/(1+2*(x**2+y))
Relevant references include the following:
Local Phenomenological Nucleon-Nucleon Potentials
R. V. Reid, Jr.
Ann. Phys. 50, 411 (1968)
Construction d'un potentiel nucléon-nucléon à coeur très mou (SSC)
R. De Tourreil and D. W. L. Sprung
Nucl. Phys. A201, 193 (1973)
Phenomenological two-nucleon interaction operator
I. E. Lagaris and V. R. Pandharipande
Nucl. Phys. A 359, 331 (1981)
Nucleon-nucleon potentials with and without Δ( 1232) degrees of freedom
R. B. Wiringa, R. A. Smith, and T. L. Ainsworth
Phys. Rev. C 29, 1207 (1984)
Accurate nucleon-nucleon potential with charge-independence breaking
R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla
Phys. Rev. C 51, 38 (1995)
Local chiral potentials with Δ-intermediate states and the structure of light nuclei
M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L. E. Marcucci, Steven C. Pieper, M. Viviani, and R. B. Wiringa
Phys. Rev. C 94, 054007 (2016)
Local position-space two-nucleon potentials from leading to fourth order of chiral effective field theory
S. K. Saha, D. R. Entem, R. Machleidt, Y. Nosyk
Phys. Rev. C 107, 034002 (2023)
Argonne v28q (unpublished)