VMC Spectroscopic Overlaps

Part II: Stripping Reactions

Part I: Pickup Reactions

Older VMC Spectroscopic Overlaps

GFMC Spectroscopic Overlaps

This web page presents recent spectroscopic overlaps calculated for a variety of nuclei in the range A=3-10 with some preliminary results for A=11,12. Corresponding one-nucleon densities can be found here. These are from variational Monte Carlo calculations (VMC) using the Argonne v18 two-nucleon and Urbana X three-nucleon potentials (AV18+UX). (Urbana X is intermediate between the Urbana IX and Illinois-7 models; it has the form of UIX supplemented with a two-pion S-wave piece, while the strengths of its terms are taken from the IL7 model. It does NOT have the three-pion-ring term of IL7.)

These VMC wave functions are the starting trial functions for a number of recent Green's function Monte Carlo (GFMC) calculations:
Brida, et al., Phys. Rev. C 84, 024319 (2011);
McCutchan, et al., Phys. Rev. C 86, 024315 (2012);
Pastore, et al., Phys. Rev. C 87, 035503 (2013);
Pastore, et al., Phys. Rev. C 90, 024321 (2014).

More details of the wave function construction can be found in
Wiringa, Phys. Rev. C 43, 1585 (1991) for A=3,4;
Pudliner, et al., Phys. Rev. C 56, 1720 (1997) for A=6,7;
Wiringa, et al., Phys. Rev. C 62, 014001 (2000) for A=8;
Pieper, et al., Phys. Rev. C 70, 044310 (2002) for A=9,10.

Following are figures and tabulations of the single-nucleon r-space amplitudes A(r) (in fm-3/2) and the integrated spectroscopic factors with the normalization:

S.F. = Integral ( A2(r) r2 dr ) .

Momentum-space amplitudes are available upon request.

In the following, states are designated by AZ(Jπ;T) except the T is omitted for states of the lowest isospin available to that nucleus. Second excited states of the same quantum numbers are denoted by AZ(Jπ2;T).

2H(1+)+n->
3H(1/2+) Figure
3H(1/2+) Table
2H(1+)+p->
3He(1/2+) Figure
3He(1/2+) Table
3H(1/2+)+p->
4He(0+) Figure
4He(0+) Table
3He(1/2+)+n->
4He(0+) Figure
4He(0+) Table
4He(0+)+n->
4He+n Summary
5He(3/2-) Figure
5He(3/2-) Table
5He(1/2-) Figure
5He(1/2-) Table
5He(1/2+) Figure
5He(1/2+) Table
6He(0+)+n->
6He+n Summary
7He(3/2-) Figure
7He(3/2-) Table
7He(1/2-) Figure
7He(1/2-) Table



6He(0+)+p->
6He+p Summary
7Li(3/2-) Figure
7Li(3/2-) Table
7Li(1/2-) Figure
7Li(1/2-) Table



6Li(1+)+n->
6Li+n Summary
7Li(3/2-) Figure
7Li(3/2-) Table
7Li(1/2-) Figure
7Li(1/2-) Table
7Li(5/2-2) Figure
7Li(5/2-2) Table
7Li(3/2-)+n->
7Li+n Summary
8Li(2+) Figure
8Li(2+) Table
8Li(1+) Figure
8Li(1+) Table
8Li(3+) Figure
8Li(3+) Table
8Li(0+) Figure
8Li(0+) Table
7Li(3/2-)+p->
7Li+p Summary
8Be(0+) Figure
8Be(0+) Table
8Be(2+) Figure
8Be(2+) Table
8Be(2+2) Figure
8Be(2+2) Table


8He(0+)+n->
8He+n Summary
9He(1/2+) Figure
9He(1/2+) Table
9He(1/2-) Figure
9He(1/2-) Table


8He(0+)+p->
8He+p Summary
9Li(3/2-) Figure
9Li(3/2-) Table
9Li(1/2-) Figure
9Li(1/2-) Table


8Li(2+)+n->
8Li+n Summary
9Li(3/2-) Figure
9Li(3/2-) Table
9Li(1/2-) Figure
9Li(1/2-) Table
9Li(5/2-) Figure
9Li(5/2-) Table
8Li(2+)+p->
8Li+p Summary
9Be(3/2-) Figure
9Be(3/2-) Table
9Be(5/2-) Figure
9Be(5/2-) Table


9Li(3/2-)+p->
9Li+p Summary
10Be(0+) Figure
10Be(0+) Table
10Be(2+) Figure
10Be(2+) Table



9Be(3/2-)+n->
9Be+n Summary
10Be(0+) Figure
10Be(0+) Table
10Be(2+) Figure
10Be(2+) Table
10Be(2+2) Figure
10Be(2+2) Table
9Be(3/2-)+p>
9Be+p Summary
10B(3+) Figure
10B(3+) Table
10B(1+) Figure
10B(1+) Table
10B(1+2)) Figure
10B(1+2)) Table

Robert B. Wiringa
Last update July 24, 2024