
Nuclear chiral interactions 
for Quantum Monte Carlo 

Methods 
Maria Piarulli—Washington University, St. Louis

Oct 11, 2019



Nuclear Physics

Quantum Chromodynamcs Atomic nuclei and nucleonic matter

Question: where does the nuclear force which binds nucleons together gets its main 
characteristics, and how it is rooted in the fundamental theory of strong interactions?

This is not a trivial problem due to the nonperturbative nature of QCD at low energy

π

N

N N

N

Meson exchange theory: introduced by 
Yukawa in 1935; in 1947 discovery of a 
massive particle called pion

Cartoon of the exchange of a pion (OPE) 
between two nucleons in the quark picture


OPE: describes the long range part of 
nuclear forces (r ≳ 2 fm) to describe the net 
attraction to form bound nuclei



Nuclear Force from LQCD LQCD predictions for magnetic moments A < 4 
Inoue et al. PRL 111, 112503 (2013); HALQCD/HPCI Beane et al., PRL113, 252001 (2014); NPLQCD 

Despite the many advances, LQCD calculations are still limited to small nucleon numbers and/or 
large prion masses

Nevertheless Lattice QCDLattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
11

Lattice Quantum Chromodynamcs Atomic nuclei and nucleonic matter



The Basic Model
! The nucleus is a system made of A interacting nucleons, its energy is given by

H = T+V =
A

∑
i=1

ti+∑
i<j
υij+ ∑

i<j<k
Vijk+ ...

where υij and Vijk are 2- and 3-nucleon interaction operators

! Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi+∑
i<j
ρij+ ... , j=

A

∑
i=1
ji+∑

i<j
jij+ ...

q
+ . . .

N N

γ

! EM current operator j satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V, ρ , j need to be derived consistently

q · j= [H, ρ ]
CCR does not constrain transverse (orthogonal to q) currents
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The basic model of nuclear theory
The basic model of nuclear theory: achieving a comprehensive description of the wealth of 
data and peculiarities exhibited by nuclear systems

Nucleon-nucleon (NN) and 3N scattering data; 

Spectra, properties, and transition of nuclei; 

Nucleonic matter equation of state; 

……

Electroweak current 
operators: jEW =

AX

i=1

ji +
AX

i<j=1

jij +
AX

i<j<k=1

jijk + ....

+ + + ….

th+expInputs for the basic model:

Many-body interactions 
between the constituents

One-body Two-body (NN) Three-body (3N)

H =
AX

i=1

p2
i

2mi
+

AX

i<j=1

vij +
AX

i<j<k=1

Vijk + .....
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Quantum Monte Carlo methods

Figure by Diego Lonardoni, LANL

QMC methods: large family of computational methods used to study complex quantum 
systems  

H  (R; s1, .., sA; t1, .., tA) = E (R; s1, .., sA; t1, .., tA)Goal:

3A coordinates in r-space Nucleon spin Nucleon isospin (p or n)

‣  Work with bare interactions but local r-space representation of the Hamiltonian

Stochastic method: based on recursive sampling of a probability density, statistical errors 
quantifiable and systematically improvable
‣  

p

p0Regularization 
schemes for NN interactions

V3NV

p0
1 p0

2

p1 p2

Separation of long- and 
short-range physics

p = (p1 � p2)/2

p0 = (p0
1 � p0

2)/2

q = (p1 � p0
1)

k = p0 � p

K = (p0 + p)/2

Local 

Non-Local 



QMC: Variational Monte Carlo (VMC)

Minimize the expectation value of H: ET =
⇥�T |H|�T ⇤
⇥�T |�T ⇤

� E0

Trial wave function (involves variational 
parameters): 

| T i =
h
1 +

X

i<j<k

Uijk

i h
S
Y

i<j

(1 + Uij)
i
| Ji

The search in the parameter space is made using COBYLA (Constrained Optimization 
BY Linear Approximations) algorithm available in NLopt library 

R.B. Wiringa, PRC 43, 1585 (1991)

(s-shell nuclei): Jastrow wave function, fully antisymmetric|⇥J� =
hQ

i<j fc(rij)
i
|�(JMTTz)� (s-shell nuclei): Jastrow wave

function, fully antisymmetric
S
Q

i<j represents a symmetrized product: represents a symmetrized product

Uij =
X

p=2,6

up(rij)O
p
ij : pair correlation operators

Uijk =
X

x

✏x V
x
ijk : three-body correlation operators

| T i are spin-isospin vectors in 3A dimension with 2A
✓

A
Z

◆



QMC: Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the 
limitations of VMC by using a projection technique to determine the true ground-state

| T i =
X

n

cn| ni H| ni = En| ni

|�(⌧ = 0)� = |�T �lim
⌧!1

| (⌧)i = lim
⌧!1

e�(H�E0) ⌧ | T i = c0| 0i

where τ is the imaginary time

Basic model

Chiral 2N
interactions

Chiral 3N
interactions

EWK
interactions

EWK QE
response

Outlook

GFMC for A  12
RMP by Carlson et al. (2015)

Propagation in imaginary time

E0 = lim
⌧!1

h V |H e
�⌧ H | V i

h V |e�⌧ H | V i
Exponential growth with A (in 12C st-states ⇠ 4⇥ 10

6)

 V =

X

s2A

X

t2A

�st(r1, . . . , rA)�st(1, . . . , A)

The method relies on the observation that       can be expanded in the complete set of 
eigenstates of the Hamiltonian according to

 T

The evaluation of         is done stochastically in small time steps Δτ (τ = n Δτ) using a 

Green’s function formulation

 (⌧)

J. Carlson et al., RMP. 87, 1067 (2015)



Nuclear Hamiltonian: phenomenological formulation of the basic model

v18(r12) = v
�
12 + v

⇡
12 + v

I
12 + v

S
12 =

18X

p=1

v
p(r12)O

p
12 NN: Argonne V18

‣  

42 independent parameters controlled by ~4300 np and pp 
scattering data below 350 MeV lab energy

18 spin, tensor, spin-orbit, isospin, etc., operators

pp, np, nn electromagnetic terms 

one pion exchange (OPE)
‣  

‣  

‣  

Wiringa, Stoks, Schiavilla PRC 51, 38 (1995)

 3N Urbana

π

Δ
π

π

π
π

π

Δ

‣ 2 independent parameters controlled by 3H binding energy & saturation density of 
symmetric nuclear matter: some problems to describe p-shell nuclei

J. Carlson et al. NP A401, 59 (1983)

An Hamiltonian including only AV18 does not provide enough binding in the light-nuclei

π

π π

π
π π

π
π Δ

Δ
Δ

S. Pieper et al. PRC 64, 014001 (2001)

/Illinois

‣ 5 independent parameters controlled by ground-state energies of A ≤ 10



Phenomenological potentials & QMC

‣ Suitable for QMC

‣ Very good description of several nuclear observables: ex. GFMC binding energies 

up to A=12 with AV18+IL7 (GFMC energies: uncertainties within 1-2%)

Pros:

Cons:‣ Phenomenological interactions are phenomenological, not clear how to improve their 
quality
‣ They do not provide rigorous schemes to consistently derive NN and 3N forces and 

compatible electroweak currents

GFMC calculations of the spectra of light-nuclei using AV18 without and with UIX or IL7

9

3-body forces:
Neutron matter and the ”puzzle” of the three-body force
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Note: AV8’+UIX and (almost) AV8’ are sti↵ enough to support observed
neutron stars, but AV8’+IL7 too soft. ! How to reconcile with nuclei???

Stefano Gandolfi (LANL) - stefano@lanl.gov Nuclear and neutron matter 27 / 29

‣ UIX: fit to H3 binding energy & saturation density of SNM 
‣ IL7:  fit to ground- and excited-state energies of light nuclei (A<10)

K. M. Nollett et al., Phys. Rev. Lett. 99, 022502 (2007)

IL7 also needed to reproduce n-↵ scattering

1.74(1)M�

2.45(1)M�

obs : ⇠ 2M�

P. Maris et al., Phys. Rev. C 87, 054318 (2013)
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Chiral EFT: from QCD to nuclear systems

QCD

Effective chiral Lagrangian

Nuclear forces and currents

Nuclear structure and dynamics

Symmetries in particular the 
approximate chiral symmetry 
between hadronic d.o.f (𝝅, N, 𝝙)

Leff (⇡, N,�)

Calculate amplitudes+prescription 
to obtain potentials + regularization 
(of high momentum components)

Leff = L(0) + L(1) + L(2) + ...

Few- and many-body 
methods: QMC, NCSM, 
CC, etc

Approximate chiral symmetry requires 
the pion to couple to other pions and to 
baryons by powers of its momentum 

L(n) ⇠
⇣ Q

⇤�

⌘n

~ 1     GeV hard scale
~ 100 MeV soft scale

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)

Given a power counting scheme



Nuclear Hamiltonian: Chiral EFT formulation of the basic model

Disadvantages:

• Increase in number of diagrams 

as we move to higher orders; 
When do we stop in the chiral 
expansion? Convergence, 
power counting, etc….


• Consistency between strong 
sector and electroweak sector 
is very hard to achieve


• More LECs appearing when we 
go up to higher orders; how do 
we fix them?

+... +...

+...

+...

+...

Chiral 2N Force

!-less Additional in -full!

LO

(Q/��)0

NLO

(Q/��)2

NNLO

(Q/��)3

N3LO
(Q/��)4

N4LO
(Q/��)5

⇤ ⇥� ⌅ ⇤ ⇥� ⌅

Figure 23: Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

relevant to our present discussion)

⇤L�i=0
� = �̄(i⌥0 ��M)�� hA

2f�

�
N̄T�S�+ h.c.

⇥
·⇤� �DT N̄⇥�⇧N ·

�
N̄T�S�+ h.c.

⇥
, (6.1)

where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and
DT are LECs.5 Moreover, Si are 2 ⇥ 4 spin transition matrices which satisfy SiSj† = (2�ij � i⇥ijk⇧k)/3
and T a are similar isospin matrices with T aT b† = (2�ab � i⇥abc⌃ c)/3. Notice that, due to the heavy baryon
expansion, the mass of the �-isobar, M�, has disappeared and only the small mass di⇥erence �M enters.

The LECs of the ⌅N Lagrangian are usually extracted in the analysis of ⌅-N scattering data and clearly
come out di⇥erently in the �-full theory as compared to the �-less one. While in the �-less theory, the
magnitude of the LECs c3 and c4 is about 3-5 GeV�1 (cf. Table 2), they turn out to be around 1 GeV�1 in
the �-full theory [221].

In the 2NF, the virtual excitation of�-isobars requires at least one loop and, thus, the contribution occurs
first at ⇤ = 2 (NLO), see Fig. 23. The � contributions to the 2PE were first evaluated in Refs. [53, 54, 220]
using time-ordered perturbation theory and later by Kaiser et al. [56] in covariant perturbation theory.

5Our convention for hA is consistent with Refs. [54, 56, 70, 107] and di⇥ers by a factor of two from Refs. [218, 221, 223].
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Figure 24: The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the �-full and �-less theories by showing that the contributions due to intermediate �-excitations,
expanded in powers of 1/�M , can be absorbed into a redefinition of the LECs of the �-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
⇥
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the �

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that
the NNLO 2PE potential of the �-less theory provides a very good approximation to the NNLO potential
in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the �-full theory, this term has the same mathematical form as the corresponding term in the �-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,
and stars denote vertices of index � = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is � = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (� Q0). They are
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are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.
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where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and
DT are LECs.5 Moreover, Si are 2 ⇥ 4 spin transition matrices which satisfy SiSj† = (2�ij � i⇥ijk⇧k)/3
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expansion, the mass of the �-isobar, M�, has disappeared and only the small mass di⇥erence �M enters.
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come out di⇥erently in the �-full theory as compared to the �-less one. While in the �-less theory, the
magnitude of the LECs c3 and c4 is about 3-5 GeV�1 (cf. Table 2), they turn out to be around 1 GeV�1 in
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In the 2NF, the virtual excitation of�-isobars requires at least one loop and, thus, the contribution occurs
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Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the �-full and �-less theories by showing that the contributions due to intermediate �-excitations,
expanded in powers of 1/�M , can be absorbed into a redefinition of the LECs of the �-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
⇥
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the �

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that
the NNLO 2PE potential of the �-less theory provides a very good approximation to the NNLO potential
in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the �-full theory, this term has the same mathematical form as the corresponding term in the �-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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2 LECs7 LECs15 LECs26 LECs

Advantages:

• A consistent description of the 

two- and many-body interactions 
and currents


• Different processes can be 
described on the same footing: 
piN, NN, electroweak processes


• Theoretical UQ due to the 
truncation in the chiral expansion


• Scheme can be systematically 
improved

Many of the available versions of chiral potentials are 
formulated in momentum-space
Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; 
Lynn et al. PRL 113, 192501 2014
Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016



“Fist generation” local chiral NN potential with 𝝙’s

Dependence on gA,
F� and hA = 3 gA/

p
2

Dependence on gA,
F� and hA = 3 gA/

p
2

(Krebs at al. EPJ A32, 127 2007), piN scattering, more 
updated analysis Roy-Steiner)

b3 + b8 (L(2)
�N�)

c1, c2, c3, c4 (L(2)
�N ) b3 + b8 (L(2)

�N�)

c1, c2, c3, c4 (L(2)
�N )

‣  the functional form taken as                                      

‣  dependence only on the momentum transfer k=p′-p

: chiral OPE and TPE component with 𝝙’s vL12

Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

LO : Q0

NLO : Q2

N2LO : Q3

k

p -p

-p0p0

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

N3LO : Q4

LO : Q0

NLO : Q2

N2LO : Q3

LO : Q0

NLO : Q2

N2LO : Q3

LO : Q0

NLO : Q2

N2LO : Q3

(a) (b)

(c) (d) (e) (f) (g) (h) (i)

vS12 : contacts up to N3LO (Q4)  26 LECs  

Assumptions:
• Neglecting long range component at N3LO; could be justified by the fact we are including 

𝝙-isobar

• Neglecting four nonlocal terms in the contacts at N3LO during the fit procedure; we limited 

the fitting up to lab energy 200 MeV

Model for local chiral interaction:
• 26 LECs obtained fitting the pp and np Granada database: two ranges of  Elab = 125 MeV 

and 200 MeV, the deuteron BE and the nn scattering length
• To minimizing the χ2  we have used the Practical Optimization Using No Derivatives (for 

Squares), POUNDers



Nucleon-Nucleon database

Models a (b) cutoff~500 MeV (600 MeV) in momentum-space

Granada database: consistent database ~8000 data up to pion production threshold
Perez at al. Phys. Rev. C 88, 064002 (2013)

Elab [MeV] Elab [MeV]



3H 4He

Model order E0

q
hr2pi E0

q
hr2pi

b LO –13.407(9) 1.23 –55.53(1) 0.90
b NLO –7.379(4) 1.69 –23.04(2) 1.55
b N2LO –7.574(9) 1.65 –23.95(3) 1.52
b N3LO –7.627(17) 1.65 –23.88(5) 1.53

At LO nuclei are significantly overbound: 5 MeV (for 3H) and 27 MeV
(for 4He) more bound of their corresponding exp values (-8.482 MeV
and -28.30 MeV)

The NLO contribution is an important correction to the LO results:

respectively, ⇠1 MeV and ⇠5 MeV underbound compared to their

exp values

At N2LO and N3LO the nuclei are still underbound (closer to exp)

|LO-NLO| > |NLO-N2LO| > |N2LO-N3LO|

Binding energies with only NN

3N interactions are needed!!

Piarulli et al. PRC 94, 054007 2016



c1 c3 c4

 Inclusion of 3N forces at N2LO:

1) Fit to:
cD

Local chiral 3N potential with 𝝙’s

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

2and =(0.645± 0.010) fm
‣              

‣              

2) Fit to:
cE

‣              

‣ GT m.e. in 3H 𝜷-decay          

-4 -3 -2 -1 0 1 2 3 4
cD

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

G
T th

/G
T ex

p

linear fit: f(cD)=1.00651+0.0102375 cD; χ2/datum=0.999953

400k MC configs.; NVIa with tau12, RS=0.8 fm-1

1.0026

0.9974

cD=[-0.89; -0.38]
cE=[-0.01; -0.17]

Model Ia Model Ia*

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

Ia*



Spectra of Light Nuclei: Phenomenology vs 𝝌EFT

Piarulli et al. PRL 120, 052503 (2018)

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

repulsion (attraction) in light-nuclei (same effect in PNM but very small)
repulsion (attraction) in light-nuclei (the opposite effect in PNM)

Model-dependence for NV2+3 up to 5-6% of the total binding energy: mostly 
due to the fact that all the four models do not reproduce the spitting in 10B

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17



Energies of Light Nuclei: Model-dependence

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Model-dependence for NV2+3 up to 5-6% of the total binding energy mostly 
due to the splitting in 10B: this is an issue related to the NNN interaction

Fit type (1)



Energies of Light Nuclei: Model-dependence

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Model-dependence for NV2+3  up to 5-6% of the total binding energy
Model-dependence for NV2+3* up to 2-3% of the total binding energy

Fit type (1) Fit type (2)
w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17



Issues with 3N: EOS of Pure Neutron Matter in 𝝌EFT

Cutoff sensitivity: modest in NV2 models; 

very large in NV2+3 models
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Fit type (1) Fit type (2) w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, R. B. Wiringa
arXiv:1908.04426

https://arxiv.org/search/?searchtype=author&query=Piarulli%2C+M
https://arxiv.org/search/?searchtype=author&query=Bombaci%2C+I
https://arxiv.org/search/?searchtype=author&query=Logoteta%2C+D
https://arxiv.org/search/?searchtype=author&query=Lovato%2C+A
https://arxiv.org/search/?searchtype=author&query=Wiringa%2C+R+B
https://arxiv.org/abs/1908.04426


Polarization observables in pd elastic scattering at 3 MeV: HH calculations with the NV2+3 
models Ia-Ib (IIa-IIb), are shown by the green (blue) band. The black dashed line are 
results obtained with only the two-body interaction NV2-Ia

More sophisticated 3N force???  Different way to fix the 3N??? subleading 
contact terms in 3N interaction???

Girlanda, Kievsky, Marcucci, Viviani



Beyond Energy Calculations

Electroweak Response functions

G.T. matrix elements involved in beta decays

Radiative/weak captures

Electroweak structure and reactions:
Magnetic moments and radii
Electroweak form factors

Current operators constructed in correspondence to the phenomenological interactions 
based on meson-exchange approach Marcucci et al. PRC 72, 014001 (2005)

Current operators derived in 𝝌EFT: Pastore et al. PRC 78, 064002 (2008), PRC 80, 
034004 (2009); Piarulli et al. PRC 87, 014006 (2013), Baroni et al. PRC 93, 015501 
(2016); Kölling et al. PRC 86, 047001 (2012), Krebs et al., Ann. Phys. 378, 317 (2017)

The Basic Model
! The nucleus is a system made of A interacting nucleons, its energy is given by

H = T+V =
A

∑
i=1

ti+∑
i<j
υij+ ∑

i<j<k
Vijk+ ...

where υij and Vijk are 2- and 3-nucleon interaction operators

! Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi+∑
i<j
ρij+ ... , j=

A

∑
i=1
ji+∑

i<j
jij+ ...

q
+ . . .

N N

γ

! EM current operator j satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V, ρ , j need to be derived consistently

q · j= [H, ρ ]
CCR does not constrain transverse (orthogonal to q) currents
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N N

NN

𝛄, 
W

± , Z + ….+

Electroweak current 
operators:

Inputs besides nuclear interactions:
……..

jEW =
AX

i=1

ji +
AX

i<j=1

jij +
AX

i<j<k=1

jijk + ....



Nuclear axial currents and beta-decays in light-nuclei

A single unknown LEC in the axial 
contact current fixed in 3H beta-decay

Matrix Element and decay rate
Understanding “quenching” of  
Relevant for neutrinoless double beta decay since rate 

Nuclear astrophysics (Sun chain reaction)

Pastore, Piarulli, Schiavilla, 

Wiringa, Baroni, Carlson, 

Gandolfi, in preparation

 Schiavilla et al. PRC 99, 034005 (2019)
Baroni et al. PRC 93, 015501 (2016)
Pastore et al. PRC 78, 064002 (2008)

Pastore et al. PRC 97 022501 (2018)



We are testing our models of NN+3N interactions with Δ-isobar based on chiral EFT 
framework in both light-nuclei and infinite nuclear matter

Conclusions 

For the time being, we are interested in studying the model-dependence of the nuclear 
observables by exploring different cutoffs and range of energies used to fit the NN 
interactions as well as analyzing different strategies fo fit the TNI 

We are investigating the effect of subleading 3N contact interactions in light-nuclei (we 
will do so also for infinite nuclear matter)

We mainly focused our attention on studying properties of nuclei up to A=12 and EoS of 
infinite neutron matter

It looks like that the formulation of the TNI with only       and       terms is too simplistic if 
we want to have a good descriptions of spectra, properties of light-nuclei, infinite nuclear 
matter, three-body observables with a certain degree of accuracy
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