
Quantum Monte Carlo calculations of nuclear matter

Kevin E. Schmidt
Department of Physics
Arizona State University

Work done with:
Mohamed Bouadani, Arizona State
Stefano Gandolfi, SISSA
Alexei Illarionov, SISSA
Francesco Pederiva, Trento
Stefano Fantoni, SISSA

Supported by the National Science Foundation

Arizona State University



Outline of Talk

• Introduction

• The nuclear Hamiltonian.

• Diffusion Monte Carlo.

• Spin sampling with auxiliary field diffusion Monte Carlo method.

• Fixed Phase Approximation

• Results

• Future

Arizona State University



Introduction

We want to be able to predict the structure of nuclei and nuclear and
neutron matter.

I will talk only about ground states.

Here the Hamiltonian will be for nonrelativistic protons and neutrons
interacting with a potential (mostly local).

Monte Carlo calculations need to be able to sample the nonlocal parts of
the propagator.
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Hamiltonian

The Hamiltonian is

H =
∑
i

p2
i

2mi
+

∑
i<j

M∑
p=1

vp(rij)O(p)(i, j) + V3

• i and j label the two nucleons

• rij is the distance separating the two nucleons

• O(p) include central, spin, isospin, and spin orbit operators, and M is
the maximum number of operators ( i.e. 18 in Argonne v18 model).

For our calculations we use:

For purely neutron systems the Argonne v′8 and the Urbana or Illinois
three-body potentials

For nuclei and nuclear matter, we have used the Argonne v′6 potential. We
are working on including spin-orbit or three-body potentials.
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The most important parts of the Urbana and Illinois three-body potentials
for nuclei have a two-body spin structure and can be included easily. The
other parts can sometimes be done perturbatively, but need to be done
correctly to give accurate results.

The operator terms in Argonne v′8 are∑
p

v(rij)O
(p)
ij = vc(rij) + vτ(rij)~τi · ~τj

+vσ(rij)~σi · ~σj + vστ(rij)~σi · ~σj~τi · ~τj
+vt(rij)tij + vtτ(rij)tij~τi · ~τj
+vLS(rij)(~Li − ~Lj) · (~Si + ~Sj)

+vLSτ(rij)(~Li − ~Lj) · (~Si + ~Sj)~τi · ~τj
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The central Part can be handled using standard GFMC or DMC.

The most successful method for light nuclei uses Monte Carlo for the
spatial variables and complete summation over the spin-isospin states.

The number of good Sz Tz spin-isospin states is

A!
Z!(A− Z)!

2A

which can be lowered by a small factor if good T 2 states are constructed.

The exponential growth of these states limits this brute force method to
12C at present.
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Diffusion Monte Carlo for Central Potentials
Schrödinger equation in imaginary time (measured in units of energy−1) is
the diffusion equation

(H − ET )Ψ(R, t) =[
− h̄2

2m
∇2 + V (R)− ET

]
Ψ(R, t) = − ∂

∂t
Ψ(R, t)

Formal solution

Ψ(R, t) = e−(H−ET )tΨ(R, 0)

HΨn(R) = EnΨn(R)

Ψ(R, 0) =
∑
n

anΨn(R)

Ψ(R, t) = e−(E0−ET )ta0Ψ0(R) +
∑
n 6=0

e−(En−E0)tanΨn(R)

Result converges to the lowest energy eigenstate not orthogonal to
Ψ(R, 0).
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Schematic Implementation

Ψ(R, t+ ∆t) =
∫
dR′e−(V (R)−ET )∆t〈R|e−P2

2m∆t|R′〉Ψ(R′, t)

• A particles (in a periodic box for matter).

• Use a short time approximation for the Green’s function.

• Sample gaussian for the kinetic energy term, evaluate the diagonal
potential terms as a weight.

• Use branching to control population.

• Use importance sampling to improve variance.

• For Fermions the wave function changes sign. Use fixed node or
transient estimation.
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Monte Carlo Spin Sampling

We want to sample the spin and isospin.

In the usual p↑, p↓, n↑, n↓ basis.

R ≡ 3A x, y, z coordinates for the nucleons

S ≡ A discrete values selecting one of p↑, p↓, n↑, n↓

ΨT (R,S) = Trial wavefunction - a complex number for given R and S.

HS,S′(R) = the Hamiltonian

There are roughly 4A spin-isospin states. We could sample them with low
variance if we could calculate ΨT (R,S) efficiently.

All known nontrivial trial functions require order 4A operations to calculate
either 1 or all the spin states.

We use trial functions with no spin-isospin operator correlations.
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Sampling with an Auxiliary Field

We diagonalize the interaction in spinor space.

This requires Order(A3) operations – same complexity as determinant.

For A particles, the v6 interaction can be written as

V =
∑
i<j

[
6∑
p=1

vp(rij)O(p)(i, j)] = Vc + Vnc

= Vc +
1
2

∑
i,α,j,β

σi,αA
(σ)
i,α,j,βσj,β

+
1
2

∑
i,α,j,β

σi,αA
(στ)
i,α,j,βσj,β~τi · ~τj

+
1
2

∑
i,j

A
(τ)
i,j ~τi · ~τj
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• Our A matrices are zero when i = j and symmetric.

• All the A matrices are real and symmetric and have real eigenvalues and
eigenvectors.

• The eigenvectors and eigenvalues are defined by∑
j,β

A
(σ)
i,α,j,β

~ψσn(j) · x̂β = λ(σ)
n
~ψσn(i) · x̂α

The matrices can be written in terms of their eigenvectors and eigenvalues
to give the noncentral potential

Vnc =
1
2

∑
i,j,n

~σi · ~ψ(σ)
n (i)λ(σ)

n
~ψ(σ)
n (j) · ~σj

+
1
2

∑
i,j,n

~σi · ~ψ(στ)
n (i)λ(στ)

n
~ψ(στ)
n (j) · ~σj~τi · ~τj

+
1
2

∑
i,j,n

~τi · ~τjψ(τ)
n (i)λ(τ)

n ψ(τ)
n (j)
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We want the squares of operators so we write

Vnc =
1
2

3A∑
n=1

(O(σ)
n )2λ(σ)

n

+
1
2

3∑
α=1

3A∑
n=1

(O(στ)
nα )2λ(στ)

n

+
1
2

3∑
α=1

A∑
n=1

(O(τ)
nα)2λ(τ)

n

with

O(σ)
n =

∑
i

~σi · ~ψ(τ)
n (i)

O(στ)
nα =

∑
i

τiα~σi · ~ψ(στ)
n (i)

O(τ)
nα =

∑
i

τiαψ
(τ)
n (i)
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• The Hubbard-Stratonovich transformation is

e−
1
2λnO

2
n∆t =

1√
2π

∫ ∞

−∞
dxe−

1
2x

2+x
√
−λn∆tOn

• Our On don’t commute, so we need to keep the time steps small so
that the commutator terms can be ignored. Each of the On is a sum of
1-body operators as required above.

• We require 3A Hubbard-Stratonovich variables for the σ terms, 9A
variables for the στ terms, and 3A variables for the τ terms. Each time
step requires the diagonalization of two 3A by 3A matrices and one A
by A matrix.

• Many other breakups are possible.
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Constrained Path

• We still have the usual fermi sign problem, in this case the overlap of
our walkers with the trial function will be complex.

• We constrain the path so that the walker has the same phase as the
trial function, and deform the path of the auxiliary field integration so
that the auxiliary variables are complex†.

• For spin independent potentials this reduces to the fixed-node or fixed
phase approximation.

• There is a variational principle for the mixed energy but not an upper
bound principle. Expectation values of H have an upper bound principle
but are not implemented here.

† S. Zhang and H. Krakauer, Quantum Monte Carlo method using phase-free random walks with Slater
determinants, Phys. Rev. Lett. 90, 136401 (2003).
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Results for neutron systems

• Neutron Matter Equation of State†.

• Neutron Matter Spin Susceptibility‡.

• Model Neutron Drops (Unambiguous comparison to GFMC)§.

• Even odd energy gaps using Pfaffian trial functions for 1S0 BCS pairing
in low density neutron matter¶.

† S. Gandolfi, et al., Quantum Monte Carlo calculation of the equation of state of neutron matter ,
in preparation. M. Bouadani, et al., Pion condensation in high density neutron matter, in preparation. A.
Sarsa, S. Fantoni, K. E. Schmidt and F. Pederiva, Neutron matter at zero temperature with auxiliary field
diffusion Monte Carlo method, Phys. Rev. C 68, 024308 (2003).

‡ S. Fantoni, A. Sarsa, K.E. Schmidt, Spin Susceptibility of Neutron Matter at Zero Temperature, Phys.
Rev. Lett. 87, 181101 (2001).

§ S. Gandolfi, K.E. Schmidt, F. Pederiva, and S. Fantoni, Three nucleon interaction role in neutron
drops, in preparation. F. Pederiva, A. Sarsa, K. E. Schmidt and S. Fantoni, Auxiliary field diffusion Monte
Carlo calculation of ground state properties of neutron drops, Nucl. Phys. A 742, 255 (2004).

¶A. Fabrocini, S. Fantoni, A. Yu Illarionov, and K.E. Schmidt, 1S0 superfluid phase transition in neutron
matter with realistic nuclear potentials and modern many-body theories, Phys. Rev. Lett. 95, 192501
(2005); and S. Gandolfi, F. Pederiva, A. Illarionov, S. Fantoni, and K.E. Schmidt, in press (2008).
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Results for neutron and proton systems

• Symmetric nuclear matter.†

• Selected nuclei.‡

• Asymmetric matter – some preliminary results.

†S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt Quantum Monte Carlo Calculations of
Symmetric Nuclear Matter Phys. Rev. Lett. 98, 102503 (2007).

‡ S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt, Auxiliary Field Diffusion Monte Carlo
Calculation of Nuclei with A40 with Tensor Interactions, Phys. Rev. Lett. 99, 022507 (2007).
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GFMC Model neutron drop comparison

Table 1: Ground state AFDMC energies of 8n(0+), 7n(1
2

+) and 7n(3
2

+)
droplets for V0 = 20MeV and the AU8’ and AU6’ interactions. The cluster
variational Monte Carlo (CVMC) and GFMC results†for the AU8’ and the
full AU18 (Argonne v18 plus Urbana IX) are also reported for comparison.
The last column reports the spin–orbit splittings (SOS) in MeV of 7n, given

by the energy difference between the 7n(3
2

+) and 7n(1
2

+) states.
8n(0+) 7n(1

2

+) 7n(3
2

+) SOS

GFMC(AU18) -37.8(1) -33.2(1) -31.7(1) 1.5(2)
CVMC(AU18) -35.5(1) -31.2(1) -29.7(1) 1.5(2)
GFMC(AU8’) -38.3(1) -34.0(1) -32.4(1) 1.6(2)
AFDMC(AU8’) -37.55(2) -33.06(3) -31.51(2) 1.55(5)

† S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Realistic models of pion-exchange
three-nucleon interactions, Phys. Rev. C 64, 14001 (2001).
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Neutron matter equation of state
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Akmal refers to the FHNC calculation†

† A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, Equation of state of nucleon matter and neutron
star structure, Phys. Rev. C 58 1804 (1998).
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Low density neutron matter with Argonne v18
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FP is the calculation of Friedman and Pandharipande (not v18, but the low
energy channels are not very different).†

† B. Friedman and V.R. Pandharipande, Hot and cold, nuclear and neutron matter, Nucl. Phys. A
361, 502 (1981).
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Superfluid wave functions

We use a BCS form used here which is the standard BCS form projected
onto N particles.

For a bulk system of spin singlet pairs,

|BCS〉 =
∏
~k

[
uk + vkc

+
~k↑
c+
−~k↓

]
|0〉

φ(~r1, s1;~r2, s2) ∝
∑
~k

vk
uk

cos
(
~k · [~r1 − ~r2]

)
[〈s1s2| ↑↓〉 − 〈s1s2| ↓↑〉]

In general

|BCS〉 =
∏
n

[
un + vnc

+
n c

+
n′

]
|0〉

φ(~r1, s1;~r2, s2) ∝
∑
n

vn
un

[ψn(~r1, s1)ψn′(~r2, s2)− ψn(~r2, s2)ψn′(~r1, s1)]
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Combinations of paired and unpaired orbitals

A general state with n paired and o unpaired orbitals for a total of
N = 2n+ o particles can be written as

A[φ12φ34...φ2n−1,2n...ψ1(2n+ 1)...ψo(N)]

which is the Pfaffian of the (N + o)× (N + o) matrix

0BBBBBBBBBBBB@

0 φ12 φ13 ... φ1N ψ1(1) ... ψo(1)
−φ12 0 φ23 ... φ2N ψ1(2) ... ψo(2)
−φ13 φ23 0 ... φ3N ψ1(3) ... ψo(3)

...
...

...
...
...
...

...
...

...
...
...

...
−φ1N −φ2N −φ3N ... 0 ψ1(N) ... ψo(N)
−ψ1(1) −ψ1(2) −ψ1(3) ... −ψ1(N) 0 ... 0

...
...

...
...
...
...

...
...

...
...
...

...
−ψo(1) −ψo(2) −ψo(3) ... −ψo(N) 0 ... 0

1CCCCCCCCCCCCA
,

where the lower o× o section is all zeroes.

Spin singlet pairing reduces to a determinant. Calculations of Pfaffians –
O(N3) operations†

† M. Bajdich, L. Mitas, L. K. Wagner and K. E. Schmidt, Pfaffian Pairing and backflow wave functions
for electronic-Structure Quantum Monte Carlo methods, Phys. Rev. B” 77, 115112 (2008).
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Central Spin Singlet Application

Dilute ≡ range R of the interaction � than interparticle spacing r0, or

kFR� 1, ρ = 3
4πr30

= k3
F

3π2

If the scattering length a is large – short range interactions can strongly
modify the dilute gas properties, kF |a| � 1.

Low density neutron matter (in inner crust of neutron stars) R ∼ 2 fm,
a = −18 fm.
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Energy and even-odd energy gap for a = −∞ †

10 20 30 40
A

0

10

20

E
/E

FG

Pairing gap (∆) = 0.99(3) EFG

odd A
even A

E = 0.44(1) A EFG

Energy as a function of particle number A.

Slater determinant nodes give an energy of E/A = 0.54EFG.

†J.Carlson, S-Y Chang, V.R. Pandharipande, and K.E. Schmidt, “Superfluid Fermi Gases with Large
Scattering Length”, Phys. Rev. Lett. 91, 050401 (2003).
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Neutron Matter pairing

We begin with Fermi-hypernetted chain correlated basis function method
to produce the trial wave function for the constraint.

Even though the dominant low density pairing is spin singlet, since the
particles’ spin can be flipped by the potential, the Pfaffian is needed.
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Neutron matter energy gaps
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Calculated energies gap (AFDMC) compared to other calculations.
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Spin Susceptibility

ρ/ρ0 Reid† Reid6‡ AU6’ AU8’ Reid6
0.75 0.45 0.53 0.40(1)
1.25 0.42 0.50 0.37(1) 0.39(1) 0.36(1)
2.0 0.39 0.47 0.33(1) 0.35(1)
2.5 0.38 0.44 0.30(1)

Spin susceptibility ratio χ/χF of neutron matter. The AFDMC results for
the interactions AU6’, AU8’ and Reid6 are compared with those obtained
from the Landau parameters calculated from FHNC and CBF theories.
The statistical error is given in parentheses.

† Brueckner calculations by S. O. Bäckmann and C. G. Källman, Phys. Lett. B 43 (1973) 263.
‡ CBF calculations by A. D. Jackson, E. Krotscheck, D. E. Meltzer and R. A. Smith, Nucl. Phys. A 386

(1992) 125.
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Pion Condensate in neutron matter

• It has been conjectured that a “pion condensate” occurs in neutron stars

• This refers to a spin-density wave in neutron matter at high densities.

• The ~σ · ~∇π coupling to the pion field indicates that such a wave would
be accompanied by a pion field with a nonzero ground-state expectation
– sort of a condensate.
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Pion Condensate Results

PW = Plane wave model state

SD = Spin density wave model state
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He Isotopes

4He

AFDMC v′6 -27.13(10) MeV
Hyperspherical v′6 -26.93(1) MeV†

GFMC v′6 -26.93(1) MeV [ -26.23(1) -0.7 MeV Coulomb ]‡

Expt -28.296 MeV

8He

AFDMC v′6 -23.6(5) MeV (Unstable to breakup into 4He+2n)
GFMC v′6 -23.55(8) MeV [ -22.85(8) -0.7 MeV Coulomb ]
Expt -31.408 MeV

† G. Orlandini, private communication
‡ R.B. Wiringa and S.C. Pieper, Evolution of Nuclear Spectra with Nuclear Forces, Phys. Rev. Lett. 89,

182501 (2002).
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Nuclear matter Energy, 28 particles, v′8 truncated to v6
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Dashed lines correspond to calculations performed with other methods†

(blue line with squares: FHNC/SOC; magenta with diamonds: BHF). Blue
triangles are FHNC/SOC results corrected with elementary diagrams.

† I. Bombaci, A. Fabrocini, A. Polls, I. Vidaña, Spin-orbit tensor interactions in homogeneous matter of
nucleons: accurancy of modern many-body theories, Phys. Lett. B, 609, 232 (2005).
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The AFDMC equation of state is fit to

E

A
=
E0

A
+ α(x− x̄)2 + β(x− x̄)3,

x = ρ/ρ0 ρ0 = 0.16 fm−3.

E0/A = -14.04(4) MeV
α = 3.09(6) MeV
β = -0.44(8) MeV
x̄ = 1.83(1)
The compressibility
K = 9x̄2

(
∂2 (E/A) /∂x2

)
x̄

at saturation density x̄ is ∼ 190 MeV.

Results with 76 and 108 particles are within 3 percent of those for 28
particles.
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Nuclear matter with Argonne v′6

Symmetric nuclear matter.
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Comparison between Argonne v′8 truncated to v6 and Argonne v′6.
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Asymmetric matter – some initial results

It’s easy to calculate with different numbers of neutrons and protons.

Removing size dependence is important.
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These are for Argonne v′6.
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Conclusions and Future

• The auxiliary field Diffusion Monte Carlo calculations can give accurate
results for nuclei, neutron and nuclear matter.

• They have polynomial scaling with system size

• The three-body and spin-orbit potentials need to be included for the
neutron-proton case.

• Asymmetric matter is straightforward, but size dependence needs to be
addressed.

• Physics of neutron rich nuclei can be studied – these are difficult to
produce in laboratories, but important for R-process reactions.

• Temperature > 0 is possible.
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